def analyse(): # Load results from disk errs_pred, errs_base = cPickle.load(open(SAVE_ROOT + 'predictions.pkl', 'rb')) # Print results print_results('Baseline errors', errs_base) print_results('Prediction errors', errs_pred) # Plot best predictions, perform layer removal MODEL.load(SAVE_PATH) indices, _, _ = save_sequences(MODEL, TEST_PREPROCESSOR, SAVE_ROOT + 'qual/') test_layer_subsets(MODEL, TEST_PREPROCESSOR, indices, SAVE_ROOT + 'lremoval/')
def test(): # Load model from disk and perform testing MODEL.load(SAVE_PATH) errs_pred, errs_base = MODEL.test( x=TEST_PREPROCESSOR, batch_size=BATCH_SIZE, metric=('mse', 'psnr', 'dssim'), ) # Save and print baseline/prediction errors cPickle.dump((errs_pred, errs_base), open(SAVE_ROOT + 'predictions.pkl', 'wb'), cPickle.HIGHEST_PROTOCOL) print_results('Baseline errors', errs_base) print_results('Prediction errors', errs_pred)