sys.path.append('../../teca') from analytics.metrix import bcubed_pr_scores clusters_y = np.array([ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, # 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, # 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, # 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ]) categories_y = np.array([ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, # 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, # 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, # 11, 11, 11, 11, 11, 11, 11, 11, 11, 11 ]) clusters_y = [1]*500 + [2]*500 + [3]*500 + [4]*200 + [5]*200 + [6]*200 + [7]*200 clusters_y = np.array(clusters_y) categories_y = np.random.permutation(clusters_y) categories_y = np.array(categories_y) # categories_y = clusters_y print categories_y print bcubed_pr_scores(clusters_y, categories_y)
# fg2 = plt.figure(num=2, figsize=(30, 8), dpi=80, facecolor='w', edgecolor='k') # ax2 = fg2.add_subplot(111) # i = 0 # bar_width = 0.15 for params_lst, params_path in zip( param_comb.ParamGridIter(params_range, "list"), param_comb.ParamGridIter(params_range, "path") ): clstr_y, clss_y, clstr_params = get_predictions(h5df, params_path, class_tag=None) clstr_y = clstr_y.reshape(1, clstr_y.shape[0]) pre_bc, rec_bc, size_per_clstr, size_per_cats = bcubed_pr_scores(clstr_y[0], clss_y[0]) print str(clstr_y.shape[1]) + ", " + ", ".join([str(i) for i in size_per_clstr[1::]]) + ", " + ", ".join( [str(i) for i in size_per_cats[1::]] ) + ", " + ", ".join([str(i) for i in clstr_params]) + ", " + str(params_lst[1]) + ", " + str(pre_bc) + ", " + str( rec_bc ) # ", ".join([str(i) for i in params_lst]) # plt.locator_params(nbins=4) # ax1.plot( # x, y, # color[i] + line_type[i] + symbol[i], linewidth=1, # markeredgewidth=1, # # label="KI04 - 3Words"