def results(): # add section data and loads of the dialog E = float(ui.editE.text()) I = float(ui.editI.text()) A = float(ui.editA.text()) ss = SystemElements() frame = FreeCAD.ActiveDocument.getObjectsByLabel( ui.comboBox.currentText())[0] sk = frame.Base for l in sk.Geometry: sp = [i * 1e-3 for i in list(l.StartPoint)[:2]] ep = [i * 1e-3 for i in list(l.EndPoint)[:2]] ss.add_element([sp, ep], EA=E * A, EI=E * I) for i in list(range(len(sk.Geometry))): if ui.table.item(i, 1): item = ui.table.item(i, 1) try: load = float(item.text()) ss.q_load(element_id=(i + 1), q=load) except: pass for i in list(range(ss.id_last_node)): if ui.table_2.item(i, 1): if ui.table_2.item(i, 1).text() == 'fix': ss.add_support_fixed(node_id=i + 1) elif ui.table_2.item(i, 1).text() == 'hinge': ss.add_support_hinged(node_id=i + 1) elif ui.table_2.item(i, 1).text() == 'roll': ss.add_support_roll(node_id=i + 1) ss.solve() ss.show_results()
def redraw(): frame = FreeCAD.ActiveDocument.getObjectsByLabel( ui.comboBox.currentText())[0] print(frame.Label) sk = frame.Base print('\tBase: ' + sk.Label) A = frame.Profile.Shape.Area * 1e-6 I = frame.Profile.Shape.MatrixOfInertia.multiply(X).dot(X) * 1e-12 ss = SystemElements() for l in sk.Geometry: sp = [i * 1e-3 for i in list(l.StartPoint)[:2]] ep = [i * 1e-3 for i in list(l.EndPoint)[:2]] ss.add_element([sp, ep], EA=E * A, EI=E * I) print('\tNodes: %i\n\tElements: %i\n\n' % (ss.id_last_node, ss.id_last_element)) ss.show_structure() ui.editE.setText(str(E)) ui.editA.setText(str(A)) ui.editI.setText(str(I)) n = len(sk.Geometry) ui.table.setRowCount(n) for i in list(range(n)): item = QtGui.QTableWidgetItem('%.1f m' % (sk.Geometry[i].length() / 1000)) ui.table.setItem(i, 0, item) ui.table.setItem(3, 1, QtGui.QTableWidgetItem('-2000')) #for test ui.table.setItem(4, 1, QtGui.QTableWidgetItem('-1000')) #for test ui.table_2.setRowCount(ss.id_last_node) for i in list(range(ss.id_last_node)): ui.table_2.setItem( i, 0, QtGui.QTableWidgetItem('%.2f, %.2f' % ss.nodes_range('both')[i])) ui.table_2.setItem(0, 1, QtGui.QTableWidgetItem('fix')) #for test ui.table_2.setItem(3, 1, QtGui.QTableWidgetItem('roll')) #for test ui.table_2.setItem(5, 1, QtGui.QTableWidgetItem('hinge')) #for test
def redraw(self): for l in self.labNodes + self.labEl: l.removeLabel() if self.form.comboBox.currentText(): frame = FreeCAD.ActiveDocument.getObjectsByLabel( self.form.comboBox.currentText())[0] sk = frame.Base A = frame.Profile.Shape.Area I = frame.Profile.Shape.MatrixOfInertia.multiply(X).dot(X) ss = SystemElements() i = 1 for l in sk.Geometry: sp = [i * 1e-3 for i in list(l.StartPoint)[:2]] ep = [i * 1e-3 for i in list(l.EndPoint)[:2]] ss.add_element([sp, ep], EA=E * A * 1e-3, EI=E * I * 1e-9) p2 = FreeCAD.Placement() p2.Base = sk.Placement.multVec((l.StartPoint + l.EndPoint) / 2) self.labNodes.append( label3D(pl=p2, color=(0, 0.8, 0), text='____beam' + str(i))) i += 1 nodes = ss.nodes_range('both') coords = [ FreeCAD.Vector(n[0] * 1000, n[1] * 1000, 0) for n in nodes ] globalCoords = [sk.Placement.multVec(c) for c in coords] i = 1 for gc in globalCoords: self.labNodes.append( label3D(pl=FreeCAD.Placement(gc, FreeCAD.Rotation()), text='____node' + str(i))) i += 1 self.form.editE.setText(str(E)) self.form.editA.setText(str(A)) self.form.editI.setText(str(I)) n = len(sk.Geometry) self.form.tableDistrib.setRowCount(n) self.combotypes.clear() for i in list(range(n)): item = QTableWidgetItem('%.1f m' % (sk.Geometry[i].length() / 1000)) self.form.tableDistrib.setItem(i, 0, item) self.combotypes.append(QComboBox()) self.combotypes[-1].addItems(['beam', 'brace']) self.form.tableDistrib.setCellWidget(i, 1, self.combotypes[-1]) #self.form. tableDistrib.setItem(0,1,QTableWidgetItem('1000')) #for test self.form.table_2.setRowCount(ss.id_last_node) self.form.tableConc.setRowCount(ss.id_last_node) self.combos.clear() for i in list(range(ss.id_last_node)): self.form.table_2.setItem( i, 0, QTableWidgetItem('%.2f, %.2f' % ss.nodes_range('both')[i])) self.combos.append(QComboBox()) self.combos[-1].addItems(['-', 'fix', 'hinge', 'roll']) self.form.table_2.setCellWidget(i, 1, self.combos[-1]) self.form.tableConc.setItem( i, 0, QTableWidgetItem('%.2f, %.2f' % ss.nodes_range('both')[i]))
def element(self): x1 = float(self.x1value.text()) x2 = float(self.x2value.text()) y1 = float(self.y1value.text()) y2 = float(self.y2value.text()) from anastruct import SystemElements ss = SystemElements() ss.add_element(location=[[x1, y1], [x2, y2]]) ss.show_structure()
def test_parallel_q_load(): system = SystemElements() system.add_element(location=[[0, 0], [1, 0]], EA=5e9, EI=8000) system.q_load(element_id=1, q=-10, direction="x") system.add_support_hinged(node_id=1) system.add_support_roll(node_id=2) system.solve() assert system.element_map[1].N_1 == -10 assert system.element_map[1].N_2 == 0
def test_linear_parallel_q_load(): system = SystemElements() system.add_element(location=[[0, 0], [1, 0]], EA=5e2, EI=800) system.add_element(location=[[1, 0], [2, 0]], EA=5e2, EI=800) system.q_load(element_id=1, q=10, q2=20, direction="x") system.add_support_hinged(node_id=1) system.add_support_roll(node_id=3) system.solve() assert np.isclose(system.reaction_forces[1].Fx, -15) assert np.isclose(np.max(system.system_displacement_vector), 0.01666667)
def test_bernoulli(): system = SystemElements() system.add_element(location=[[0, 0], [1, 0]], EA=1.4e8, EI=1.167e5) system.q_load(element_id=1, q=5000, direction="y") system.add_support_hinged(node_id=1) system.add_support_roll(node_id=2) system.solve() assert np.isclose(np.max(abs(system.element_map[1].deflection)), 5.58e-4, rtol=1e-2)
def build_struct(nodes): ss = SystemElements() for i in range(len(nodes) - 1): ss.add_element(location=[nodes[i], nodes[i + 1]]) ss.add_support_fixed(node_id=1) if nodes.count(end_xy) > 0: print("End point reached") ss.add_support_fixed(node_id=nodes.index(end_xy) + 1) ss.q_load(element_id=1, q=-1) ss.solve() ss.show_structure() ss.show_displacement()
def test_timoshenko_discrete(): system = SystemElements() system.add_element(location=[[0.25, 0]], EA=1.4e8, EI=1.167e5, GA=0.8333 * 8.75e6) system.add_element(location=[[0.5, 0]], EA=1.4e8, EI=1.167e5, GA=0.8333 * 8.75e6) system.add_element(location=[[0.75, 0]], EA=1.4e8, EI=1.167e5, GA=0.8333 * 8.75e6) system.add_element(location=[[1, 0]], EA=1.4e8, EI=1.167e5, GA=0.8333 * 8.75e6) system.q_load(element_id=1, q=5000, direction="y") system.q_load(element_id=2, q=5000, direction="y") system.q_load(element_id=3, q=5000, direction="y") system.q_load(element_id=4, q=5000, direction="y") system.add_support_hinged(node_id=1) system.add_support_roll(node_id=5) system.solve() assert np.isclose(abs(system.system_displacement_vector[7]), 6.44e-4, rtol=1e-2)
def Beam_objective_funciton_BD(depths): #def fn(*args): #beam1 = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing); #beam1.moment_capcity() #beam1.min_spacing() #beam1.max_spacing() FS = SystemElements() # Add beams to the system. FS.add_element(location=[0, 5], EA=15000, EI=5000) FS.add_element(location=[[0, 5], [5, 5]], EA=15000, EI=5000) FS.add_element(location=[[5, 5], [5, 0]], EA=15000, EI=5000) # Add a fixed support at node 1. FS.add_support_fixed(node_id=1) # Add a rotational spring support at node 4. FS.add_support_spring(node_id=4, translation=3, k=4000) # Add loads. FS.point_load(Fx=30, node_id=2) FS.q_load(q=-10, element_id=2) FS.q_load(q=-10, element_id=1) #ss.q_load(q=-10, element_id=4) #print(ss.node_ranges()) # Solve FS.solve() FS.get_element_results(element_id=1)['length'] FS.get_element_results(element_id=1)['Mmin'] deno = FS.get_element_results(element_id=1)['Mmax'] #breadth = randgen(300,600) #Asc = 0 #Ast = 0 #spacing = 150 #beam = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing) #Asc = beam.p_min() #Ast = beam.p_min() #beam1 = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing) #beam1.moment_capcity() #beam1.min_spacing() #beam1.max_spacing() #print(beam1.moment_capcity()*10**(-3)) #print(FS.get_element_results(element_id=1)['Mmax']) res, depth_f = Beam_gene(depths, deno) C_D = res / deno #print() return C_D
def test_linear_q_load(): system = SystemElements() system.add_element(location=[[0, 0], [1, 0]], EA=5e8, EI=800) system.add_element(location=[[1, 0], [2, 0]], EA=5e8, EI=800) system.q_load(element_id=1, q=-10, q2=-20, direction="y") system.add_support_hinged(node_id=1) system.add_support_roll(node_id=3) system.solve() assert np.isclose(np.max(abs(system.element_map[1].shear_force)), 10.87, rtol=1e-2) assert np.isclose(np.max(abs(system.element_map[2].shear_force)), 4.17, rtol=1e-2) assert np.isclose(np.max(abs(system.element_map[1].bending_moment)), 4.62, rtol=1e-2) assert np.isclose(np.max(abs(system.system_displacement_vector)), 3.7673e-3, rtol=1e-2)
def test_moment_q_load(): system = SystemElements() start=0 step = 0.1 for i in range(20): system.add_element(location=[[start, 0], [start+step, 0]], EA=5e2, EI=800) start+=step system.q_moment(element_id=1+i, Ty=10) system.add_support_hinged(node_id=1) system.add_support_roll(node_id=21) system.solve() assert np.isclose(system.reaction_forces[1].Fz, 10)
def test_timoshenko_continuous(): system = SystemElements() system.add_element(location=[[0, 0], [1, 0]], EA=1.4e8, EI=1.167e5, GA=0.8333 * 8.75e6) system.q_load(element_id=1, q=5000, direction="y") system.add_support_hinged(node_id=1) system.add_support_roll(node_id=2) system.solve() assert np.isclose(np.max(abs(system.element_map[1].deflection)), 6.44e-4, rtol=1e-2)
def pressed(self): x1 = int(self.x1value.text()) x2 = int(self.x2value.text()) y1 = int(self.y1value.text()) y2 = int(self.y2value.text()) movel = (int(self.movelvalue.text())) fixo = (int(self.fixovalue.text())) from anastruct import SystemElements ss = SystemElements() ss.add_element(location=[[x1, y1], [x2, y2]]) ss.add_support_hinged(node_id=movel) ss.add_support_fixed(node_id=fixo) ss.q_load(element_id=1, q=-10) ss.solve() ss.show_structure() ss.show_reaction_force()
def test_example(): system = SystemElements() system.add_element(location=[[0, 0], [3, 4]], EA=5e9, EI=8000) system.add_element(location=[[3, 4], [8, 4]], EA=5e9, EI=4000) system.q_load(element_id=2, q=-10) system.add_support_hinged(node_id=1) system.add_support_fixed(node_id=3) sol = np.fromstring( """0.00000000e+00 0.00000000e+00 1.30206878e-03 1.99999732e-08 5.24999402e-08 -2.60416607e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00""", float, sep=" ", ) system.solve assert np.allclose(system.solve(), sol)
def Beam_objective_funciton(breadth): depth = randgen(300,600) Asc = 0 Ast = 0 spacing = 150 beam = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing); Asc = beam.p_min Ast = beam.p_min beam1 = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing); beam1.moment_capcity() beam1.min_spacing() beam1.max_spacing() FS = SystemElements() # Add beams to the system. FS.add_element(location=[0, 5],EA=15000, EI=5000) FS.add_element(location=[[0, 5], [5, 5]],EA=15000, EI=5000) FS.add_element(location=[[5, 5], [5, 0]],EA=15000, EI=5000) # Add a fixed support at node 1. FS.add_support_fixed(node_id=1) # Add a rotational spring support at node 4. FS.add_support_spring(node_id=4, translation=3, k=4000) # Add loads. FS.point_load(Fx=30, node_id=2) FS.q_load(q=-10, element_id=2) FS.q_load(q=-10, element_id=1) #ss.q_load(q=-10, element_id=4) #print(ss.node_ranges()) # Solve FS.solve() FS.get_element_results(element_id=1)['length'] FS.get_element_results(element_id=1)['Mmin'] FS.get_element_results(element_id=1)['Mmax'] print(beam1.moment_capcity()*10**(-3)) print(FS.get_element_results(element_id=1)['Mmax'])
def test_moment_load_benchmark(): system = SystemElements() system.add_element(location=[[3.75, 0]], EA=5e12, EI=5e12) system.add_element(location=[[7.5,0]], EA=5e12, EI=5e12) system.q_moment(element_id=1, Ty=1.91) system.q_moment(element_id=2, Ty=1.91) system.q_load(element_id=1, q=3.62, direction="y") system.q_load(element_id=2, q=3.62, direction="y") system.add_support_spring(1, 2, 5) system.add_support_spring(2, 2, 2.5) system.add_support_spring(3, 2, 2.5) system.solve() assert np.isclose(np.max(abs(system.element_map[1].bending_moment)), 13.89,rtol=1e-2) assert np.isclose(system.reaction_forces[1].Fz, 11.93,rtol=1e-2)
def test_solve_modal_analysis(): system = SystemElements() l = 10 n = 50 subd = l / n for i in range(n): system.add_element(location=[[subd * i, 0], [subd * (i + 1), 0]], EA=5e8, EI=800, linear_density=10) system.add_support_hinged(node_id=1) system.add_support_roll(node_id=n + 1) natural_frequencies = system.solve_modal_analysis() def analytical_natural_frequencies(linear_density, l, EI, n): # See Rao, Singiresu S. - Vibration of continuous Systems - John Wiley & Sons (2019) - Section 11.5.1 return (n ** 2) * (np.pi ** 2) * np.sqrt(EI / (linear_density * l ** 4)) # retrieve fist four eigenvalues, as error incr6eases for higher eigenvalues for i in range(4): assert np.isclose(natural_frequencies[i], analytical_natural_frequencies(10, 10, 800, i + 1), rtol=1e-2)
def __init__(self, x, y, connections, loads, supports, density=880, unit='m', width=0.95 / 100, thick=1.8 / 1000, pop_compressive_strength=18100, pop_tensile_strength=70000): pop_cross_area = width * thick pop_mpl = pop_cross_area * density g = pop_mpl * 9.81 / 1000 unit_conv = 1 if (unit == 'cm'): unit_conv = (1 / 100) nodes = [[x[i] * unit_conv, y[i] * unit_conv] for i in range(len(x))] ss = SystemElements(EA=pop_cross_area * 8600000) for node1, node2 in connections: ss.add_element([nodes[node1], nodes[node2]], element_type='truss', g=g) for node in supports: id = ss.find_node_id(nodes[node]) ss.add_support_fixed(id) for node, load in loads: id = ss.find_node_id(nodes[node]) ss.point_load(id, Fy=-9.81 * load / 1000) ss.solve() self.ss = ss self.nodes = nodes self.connections = connections self.loads = loads self.supports = supports self.pop_mpl = pop_mpl self.cross_area = pop_cross_area self.compress = pop_compressive_strength self.tensile = pop_tensile_strength
def test_moment_load_benchmark_2(): system = SystemElements() system.add_element(location=[[3.125, 0]], EA=5e12, EI=5e12) system.add_element(location=[[5.625+3.125,0]], EA=5e12, EI=5e12) system.q_moment(element_id=1, Ty=1.836) system.q_moment(element_id=2, Ty=1.836) system.q_load(element_id=1, q=4.08, direction="y") system.q_load(element_id=2, q=4.08, direction="y") system.add_support_spring(1, 2, 3.75) system.add_support_spring(2, 2, 2.5) system.add_support_spring(3, 2, 2.5) #system.add_support_hinged(1) #system.add_support_hinged(2) #system.add_support_hinged(3) system.solve() assert np.isclose(np.max(abs(system.element_map[2].bending_moment)), 24.87,rtol=1e-2) assert np.isclose(np.max(abs(system.element_map[1].shear_force)), 13.2,rtol=1e-2)
def test_struct(): ss = SystemElements() ss.add_element([[0, 0], [1, 0]]) ss.add_element([[1, 0], [1, 1]]) ss.add_element([[1, 0], [2, 0]]) ss.add_element([[2, 0], [3, 0]]) ss.add_element([[3, 0], [4, 1]]) ss.add_element([[4, 1], [5, 1]]) ss.point_load(2, Fy=10) ss.point_load(3, Fy=-20, Fx=5) ss.point_load(4, Fy=-30) ss.point_load(5, Fx=-40) ss.moment_load(2, Ty=-9) ss.moment_load(1, 7) ss.moment_load(3, 3) ss.q_load(element_id=3, q=(-10, -20)) ss.q_load(element_id=5, q=(-10, -20)) ss.add_support_roll(4) ss.add_support_hinged(5) # ss.add_support_fixed(3) mn = Manager(ss) mn.generate_pdf(pdf_path=r"C:\testfolder")
def test_struct2(): ss = SystemElements() ss.add_element([[0, 0], [1, 0]]) ss.add_element([[1, 0], [1, 1]]) ss.add_element([[1, 0], [2, 0]]) ss.add_element([[2, 0], [3, 0]]) ss.add_element([[3, 0], [4, 1]]) ss.add_element([[4, 1], [5, 1]]) ss.point_load(2, Fy=10) ss.point_load(3, Fy=-20) ss.point_load(4, Fy=-30) ss.point_load(5, Fx=-40) ss.moment_load(2, Ty=-9) ss.moment_load(1, 7) ss.moment_load(3, 3) ss.q_load(element_id=3, q=(-10, -20)) ss.add_support_roll(4) ss.add_support_hinged(5) # ss.show_structure() ss.solve() ss.show_reaction_force(show=False) ass = Assembler(ss) ass.assemble_structure(main_path=Setting.longest) [print(element.id, values) for element, values in ass.internal_stresses_dict.items()]
from anastruct import SystemElements ss = SystemElements(EA=15000, EI=5000) # Add beams to the system. ss.add_element(location=[0, 5]) ss.add_element(location=[[0, 5], [5, 5]]) ss.add_element(location=[[5, 5], [5, 0]]) ss.add_element(location=[[0, 5], [0, 10]]) ss.add_element(location=[[0, 10], [5, 10]]) ss.add_element(location=[[5, 10], [5, 5]]) # Add a fixed support at node 1. ss.add_support_fixed(node_id=1) ss.add_support_fixed(node_id=4) # Add loads. ss.point_load(Fx=30, node_id=2) ss.point_load(Fx=30, node_id=5) ss.q_load(q=-10, element_id=2) ss.q_load(q=-10, element_id=5) # Solve ss.solve() # Get visual results. ss.show_structure() ss.show_reaction_force() ss.show_axial_force() ss.show_shear_force() ss.show_bending_moment() ss.show_displacement()
""" Created on Tue Jul 14 11:50:42 2020 @author: leafuser """ import matplotlib as plt #from matplotlib.widgets import Slider import numpy as np from anastruct import SystemElements ss = SystemElements() #axSlider1 = plt.axes([0.1, 0.2, 0.8, 0.05]) #slider1 = Slider(axSlider1, 'Slider1', valmin=0, valmax=5) #1 ss.add_element(location=[[0, 0], [.5, 1]]) #2 ss.add_element(location=[[0, 0], [.8, .8]]) #3 ss.add_element(location=[[.8, .8], [.5, 1]]) #4 ss.add_element(location=[[.5, 1], [1.5, 2]]) #5 ss.add_element(location=[[.8, .8], [1.7, 1.6]]) #6 ss.add_element(location=[[.8, .8], [2, 1.3]]) #7 ss.add_element(location=[[2, 1.3], [1.7, 1.6]]) #8 ss.add_element(location=[[1.7, 1.6], [1.5, 2]])
from anastruct import SystemElements import random def randgen(lb, ub): return lb - float(float(random.randint(0, 100)) / 100) * (lb - ub) ss = SystemElements() # Add beams to the system. ss.add_element(location=[0, 5], EA=15000, EI=5000) ss.add_element(location=[[0, 5], [5, 5]], EA=15000, EI=5000) ss.add_element(location=[[5, 5], [5, 0]], EA=15000, EI=5000) # Add a fixed support at node 1. ss.add_support_fixed(node_id=1) # Add a rotational spring support at node 4. ss.add_support_spring(node_id=4, translation=3, k=4000) # Add loads. ss.point_load(Fx=30, node_id=2) ss.q_load(q=-10, element_id=2) ss.q_load(q=-10, element_id=1) #ss.q_load(q=-10, element_id=4) #print(ss.node_ranges()) # Solve ss.solve() #print(ss.get_element_results(element_id=1))
def test_struct1(): ss = SystemElements() ss.add_element([[-2, 2], [-1, 0]]) ss.add_element([[-2, 3], [-2, 2]]) ss.add_element([[-1, 4], [-2, 3]]) # ss.add_element([[-1, 4], [0, 5]]) # ss.add_element([[0, 5], [1, 5]]) # ss.add_element([[1, 5], [2, 5]]) # ss.add_element([[2, 5], [3, 5]]) # ss.add_element([[3, 5], [5, 2]]) ss.add_element([[-3, 4], [-2, 3]]) ss.add_element([[-4, 4], [-3, 4]]) ss.add_element([[-3, 5], [-3, 4]]) ss.add_element([[-2, 0], [-1, 0]]) ss.add_element([[-2, 1], [-2, 0]]) ss.add_element([[-2, -1], [-2, 0]]) ss.add_element([[-3, 0], [-2, 0]]) ss.add_element([[-4, 1], [-3, 0]]) ss.add_element([[-5, 2], [-4, 1]]) ss.add_element([[-4, -1], [-3, 0]]) ss.add_element([[-5, -2], [-4, -1]]) ss.add_element([[-1, 0], [0, 0]]) ss.add_element([[0, 0], [1, 0]]) ss.add_element([[2, 0], [3, 0]]) ss.add_element([[1, 0], [2, 0]]) ss.add_element([[2, 0], [3, 1]]) ss.point_load(10, 5) ss.moment_load(1, 15) # ss.add_element([[3, 1], [4, 1]]) # ss.add_element([[3, 1], [3, 2]]) # ss.add_element([[4, 1], [5, 2]]) # ss.add_element([[4, 1], [6, 2]]) ss.add_element([[1, 0], [-1, 1]]) ss.show_structure() ass = Assembler(ss) ass.assemble_structure(main_path=(15, 20)) # ass.assemble_structure(main_path=(7, 13)) # ass.plot_solve_order(ass.plot_order, show=True, save_figure=False, plotting_start_node=15) [[print(f"section {index + 1}-{sub_index + 1}: {sympify(sub_string, evaluate=False)}") for sub_index, sub_string in enumerate(string)] for index, string in enumerate(ass.sections_strings)]
class connections: def __init__(self, main_window, main_window_functions): self.mw = main_window self.fn = main_window_functions self.ss = SystemElements() self.ss.color_scheme = "dark" self.was_solved = False self.states = [] def add_beam(self): try: self.workaround() e = self.mw.elementtype.currentIndex() if self.mw.utilizeinfo.isChecked(): EI = float(self.fn.filter(self.mw.beam_E.text())) * float( self.fn.filter(self.mw.beam_I.text())) EA = float(self.fn.filter(self.mw.beam_E.text())) * float( self.fn.filter(self.mw.beam_A.text())) element_types = ["beam", "truss"] self.ss.add_element(location=[ [ float(self.fn.filter(self.mw.beam_x1.text())), float(self.fn.filter(self.mw.beam_y1.text())) ], [ float(self.fn.filter(self.mw.beam_x2.text())), float(self.fn.filter(self.mw.beam_y2.text())) ] ], EI=EI, EA=EA, element_type=element_types[e]) else: self.ss.add_element( location=[[ float(self.fn.filter(self.mw.beam_x1.text())), float(self.fn.filter(self.mw.beam_y1.text())) ], [ float(self.fn.filter( self.mw.beam_x2.text())), float(self.fn.filter(self.mw.beam_y2.text())) ]]) self.visualize_structure() self.states.append(pickle.dumps(self.ss)) except: self.fn.warning() def beam_info(self): if self.mw.utilizeinfo.isChecked(): self.mw.frame_4.setHidden(False) else: self.mw.frame_4.setHidden(True) def element_type_list(self): if self.mw.elementtype.currentIndex() == 1: self.mw.beam_I.setEnabled(False) elif self.mw.elementtype.currentIndex() == 0: self.mw.beam_I.setEnabled(True) def add_node(self): try: if int(self.mw.node_id.text()) in self.ss.node_map.keys(): self.workaround() self.ss.insert_node(element_id=int(self.mw.node_id.text()), location=[ self.fn.filter(self.mw.node_x.text()), self.fn.filter(self.mw.node_y.text()) ]) self.mw.last_figure.click() self.states.append(pickle.dumps(self.ss)) else: self.fn.invalid_id_warning() except: self.fn.warning() def add_support(self): try: if int(self.mw.support_pos.text()) in self.ss.node_map.keys(): self.workaround() if self.mw.support_hinged.isChecked(): self.ss.add_support_hinged( node_id=int(self.mw.support_pos.text())) elif self.mw.support_roll.isChecked(): self.ss.add_support_roll( node_id=int(self.mw.support_pos.text()), angle=float( self.fn.filter(self.mw.support_angle.text()))) elif self.mw.support_fixed.isChecked(): self.ss.add_support_fixed( node_id=int(self.mw.support_pos.text())) elif self.mw.support_spring.isChecked(): self.ss.add_support_spring( node_id=int(self.mw.support_pos.text()), translation=self.mw.spring_translation.text(), k=self.mw.spring_k.text()) elif self.mw.support_internal_hinge.isChecked(): pass self.mw.last_figure.click() self.states.append(pickle.dumps(self.ss)) self.fn.enable_buttons() else: self.fn.invalid_id_warning() except: self.fn.warning() def show_support_stuff(self): if self.mw.support_roll.isChecked(): self.mw.support_angle.setHidden( True) # Always true due to anaStruct bug self.mw.label_113.setHidden( True) # Always true due to anaStruct bug self.mw.label_27.setHidden( True) # Always true due to anaStruct bug self.mw.label_71.setHidden(True) self.mw.label_73.setHidden(True) self.mw.spring_k.setHidden(True) self.mw.spring_translation.setHidden(True) elif self.mw.support_spring.isChecked(): self.mw.label_71.setHidden(False) self.mw.label_73.setHidden(False) self.mw.spring_k.setHidden(False) self.mw.spring_translation.setHidden(False) self.mw.support_angle.setHidden( True) # Always true due to anaStruct bug self.mw.label_27.setHidden(True) self.mw.label_127.setHidden(False) else: self.mw.support_angle.setHidden( True) # Always true due to anaStruct bug self.mw.label_27.setHidden(True) self.mw.label_71.setHidden(True) self.mw.label_73.setHidden(True) self.mw.spring_k.setHidden(True) self.mw.label_113.setHidden(True) self.mw.label_127.setHidden(True) self.mw.spring_translation.setHidden(True) def add_point_load(self): try: if int(self.mw.load_pos.text()) in self.ss.node_map.keys(): self.workaround() if self.mw.load_moment.text() != '' and float( self.mw.load_moment.text()) != 0: self.ss.moment_load( node_id=int(self.mw.load_pos.text()), Ty=float(self.fn.filter(self.mw.load_moment.text()))) if float(self.mw.load_y.text()) == 0 and float( self.mw.load_x.text()) == 0 and float( self.mw.load_angle.text()) == 0: pass elif self.mw.load_y.text() != '' and self.mw.load_x.text( ) != '' and self.mw.load_angle.text() != '': self.ss.point_load( node_id=int(self.mw.load_pos.text()), Fy=float(self.fn.filter(self.mw.load_y.text())), Fx=float(self.fn.filter(self.mw.load_x.text())), rotation=float( self.fn.filter(self.mw.load_angle.text()))) self.mw.last_figure.click() self.states.append(pickle.dumps(self.ss)) self.fn.enable_buttons() else: self.fn.invalid_id_warning() except: self.fn.warning() def add_q_load(self): try: if int(self.mw.qload_pos.text()) in self.ss.node_map.keys(): if float(self.mw.qload_initial.text()) >= 0 and float(self.mw.qload_final.text()) >= 0 or \ float(self.mw.qload_initial.text()) <= 0 and float(self.mw.qload_final.text()) <= 0: self.workaround() if self.mw.qload_initial.text() == '': self.mw.qload_final.setText( self.fn.filter(self.mw.qload_final.text())) if self.mw.qload_final.text() == '': self.mw.qload_final.setText( self.fn.filter(self.mw.qload_initial.text())) self.ss.q_load( element_id=int(self.mw.qload_pos.text()), q=(float(self.fn.filter(self.mw.qload_initial.text())), float(self.fn.filter(self.mw.qload_final.text())))) self.mw.last_figure.click() self.states.append(pickle.dumps(self.ss)) self.fn.enable_buttons() else: msg = QMessageBox() msg.setWindowTitle(self.mw.warning_title) msg.setText(self.mw.qload_warning) msg.setIcon(QMessageBox.Warning) x = msg.exec_() else: self.fn.invalid_id_warning() except: self.fn.warning() def visualize_structure(self): if self.ss.element_map: self.mw.MplWidget.canvas.figure.clear() ax = self.mw.MplWidget.canvas.figure.add_subplot(111) self.fn.visualize( self.ss.show_structure(show=False, figure=(self.mw.MplWidget.canvas.figure, ax))) ax.patch.set_alpha(0.2) self.mw.last_figure = self.mw.show_structure else: self.mw.MplWidget.plot(has_grid=self.mw.gridBox.isChecked()) self.fn.figurefix() self.mw.last_figure = None def visualize_diagram(self): self.solve() self.mw.MplWidget.canvas.figure.clear() ax = self.mw.MplWidget.canvas.figure.add_subplot(111) ax.patch.set_alpha(0.2) self.fn.visualize( self.ss.show_structure(show=False, free_body_diagram=1, figure=(self.mw.MplWidget.canvas.figure, ax))) self.mw.last_figure = self.mw.show_diagram def visualize_supports(self): self.solve() self.mw.MplWidget.canvas.figure.clear() ax = self.mw.MplWidget.canvas.figure.add_subplot(111) ax.patch.set_alpha(0.2) self.fn.visualize( self.ss.show_reaction_force( show=False, figure=(self.mw.MplWidget.canvas.figure, ax))) self.mw.last_figure = self.mw.show_supports def visualize_normal(self): self.solve() self.mw.MplWidget.canvas.figure.clear() ax = self.mw.MplWidget.canvas.figure.add_subplot(111) ax.patch.set_alpha(0.2) self.fn.visualize( self.ss.show_axial_force(show=False, figure=(self.mw.MplWidget.canvas.figure, ax))) self.mw.last_figure = self.mw.show_normal def visualize_shear(self): self.solve() self.mw.MplWidget.canvas.figure.clear() ax = self.mw.MplWidget.canvas.figure.add_subplot(111) ax.patch.set_alpha(0.2) self.fn.visualize( self.ss.show_shear_force(show=False, figure=(self.mw.MplWidget.canvas.figure, ax))) self.mw.last_figure = self.mw.show_shear def visualize_moment(self): self.solve() self.mw.MplWidget.canvas.figure.clear() ax = self.mw.MplWidget.canvas.figure.add_subplot(111) ax.patch.set_alpha(0.2) self.fn.visualize( self.ss.show_bending_moment( show=False, figure=(self.mw.MplWidget.canvas.figure, ax))) self.mw.last_figure = self.mw.show_moment def visualize_displacement(self): self.solve() self.mw.MplWidget.canvas.figure.clear() ax = self.mw.MplWidget.canvas.figure.add_subplot(111) ax.patch.set_alpha(0.2) self.fn.visualize( self.ss.show_displacement(show=False, figure=(self.mw.MplWidget.canvas.figure, ax))) self.mw.last_figure = self.mw.show_displacement def solve(self): self.was_solved = True self.ss.solve() def static_solver(self, clean=True): if find_executable('latex'): if self.mw.show_moment.isEnabled(): if (len(self.ss.supports_roll) == 1 and len(self.ss.supports_hinged) == 1) \ or (len(self.ss.supports_fixed) == 1): dialog = QDialog() prompt = PathPrompt(self.mw.language, dialog) dialog.exec_() if not prompt.userTerminated: solve_path = prompt.path file, ok = QFileDialog.getSaveFileName( self.mw, self.mw.pdf_title, self.mw.pdf_text, "PDF (*.pdf)") if ok: try: self.mw.toolBox.setCurrentIndex(0) pdf_dir, filename = split_dir_filename(file) make_pdf_folders(pdf_dir) self.ss.color_scheme = "bright" plt.style.use('default') mn = Manager(self.ss) pdf_generator_thread = PDFGeneratorThread( mn.generate_pdf, self.mw.language, pdf_path=pdf_dir, filename=filename, solve_path=solve_path, path_warning=self.fn.path_warning, ) self.fn.setupLoading(pdf_generator_thread) pdf_generator_thread.finished.connect( self.on_finished) pdf_generator_thread.start() self.mw.loadingScreen.exec_() if not self.mw.loadingUi.userTerminated: self.fn.pdf_generated_prompt() if clean: delete_folder(pdf_dir) self.ss.color_scheme = "dark" plt.style.use('dark_background') except: self.fn.latex_packages_warning() else: self.fn.static_warning() else: self.fn.warning() else: self.fn.latex_warning() def on_finished(self): self.mw.loadingScreen.close() def reset_struct_elems(self): self.ss = SystemElements() self.ss.color_scheme = "dark" self.states.clear() self.mw.MplWidget.plot(has_grid=self.mw.gridBox.isChecked()) self.mw.MplWidget.set_background_alpha() self.mw.MplWidget.set_subplot_alpha() self.fn.figurefix() self.was_solved = False self.fn.disable_buttons() def load_structure_aux(self, file): with open(f'{file}', 'rb') as f: self.ss, _, _ = pickle.load(f) self.mw.struct_loaded = True def workaround(self): if self.was_solved: self.ss = pickle.loads(self.states[-1]) self.was_solved = False def reset(self): self.workaround() self.ss.remove_loads() self.mw.MplWidget.canvas.figure.clear() ax = self.mw.MplWidget.canvas.figure.add_subplot(111) ax.patch.set_alpha(0.2) self.fn.visualize( self.ss.show_structure(show=False, figure=(self.mw.MplWidget.canvas.figure, ax))) self.states.append(pickle.dumps(self.ss)) self.fn.disable_buttons()
from anastruct import SystemElements ss = SystemElements() # Add beams to the system. ss.add_element(location=[0, 3],EA=15000, EI=5000) ss.add_element(location=[[0, 3], [3, 3]],EA=15000, EI=5000) ss.add_element(location=[[3, 3], [3, 0]],EA=15000, EI=5000) ss.add_element(location=[[3, 3], [6, 3]],EA=15000, EI=5000) ss.add_element(location=[[6, 3], [6, 0]],EA=15000, EI=5000) ss.add_element(location=[[0, 3], [0, 6]],EA=15000, EI=5000) ss.add_element(location=[[0, 6], [3, 6]],EA=15000, EI=5000) ss.add_element(location=[[3, 6], [3, 3]],EA=15000, EI=5000) ss.add_element(location=[[3, 6], [6, 6]],EA=15000, EI=5000) ss.add_element(location=[[6, 6], [6, 3]],EA=15000, EI=5000) ss.add_element(location=[[0, 6], [0, 9]],EA=15000, EI=5000) ss.add_element(location=[[0, 9], [3, 9]],EA=15000, EI=5000) ss.add_element(location=[[3, 9], [3, 6]],EA=15000, EI=5000) ss.add_element(location=[[3, 9], [6, 9]],EA=15000, EI=5000) ss.add_element(location=[[6, 9], [6, 6]],EA=15000, EI=5000) # Add a fixed support at node 1. ss.add_support_fixed(node_id=1) ss.add_support_fixed(node_id=4) ss.add_support_fixed(node_id=6) # Add loads. ss.point_load(Fx=10, node_id=2) ss.point_load(Fx=20, node_id=7) ss.point_load(Fx=30, node_id=10) ss.q_load(q=-10, element_id=2)
def get_diagram(): ''' Recebe um parâmetro numerico que identifica o tipo de diagrama a ser retornado 0 = Estrutural 1 = Forças de reação 2 = Axial 3 = Cortante 4 = Fletor 5 = Displacement ? Requisita os parâmetros, via json: apoio1 e apoio2, que são os tipos dos apoios apoio1pos e apoio2pos, que são as posições dos dois apoios cargap, que é a posição da carga cargam, que é o módulo da carga Tipo dos apoios: 0 = Primeiro gênerio (roll) 1 = Segundo gênero (hinged) 2 = Tercêiro Gênero (fixed) ''' tipo = int(request.args.get('tipo')) r = requests.get('https://calculusapi.herokuapp.com/test') apoio1tipo, apoio2tipo = r.json().get('apoio1'), r.json().get('apoio2') apoio1pos, apoio2pos = r.json().get('apoio1p'), r.json().get('apoio2p') cargapos = r.json().get('cargap') cargamod = r.json().get('cargam') ss = SystemElements() #criação da barra ss.add_element(location=[[0, 0], [3, 0]]) ss.add_element(location=[[3, 0], [8, 0]]) #adição do primeiro apoio if apoio1tipo == 0: ss.add_support_roll(node_id=apoio1pos) elif apoio1tipo == 1: ss.add_support_hinged(node_id=apoio1pos) else: ss.add_support_fixed(node_id=apoio1pos) #adição do segundo apoio if apoio2tipo == 0: ss.add_support_roll(node_id=apoio2pos) elif apoio2tipo == 1: ss.add_support_hinged(node_id=apoio2pos) else: ss.add_support_fixed(node_id=apoio2pos) #adição da carga ss.q_load(element_id=cargapos, q=cargamod) #geração dos diagramas ss.solve() img = io.BytesIO() if tipo == 0: ss.show_structure(show=False).savefig(img) elif tipo == 1: ss.show_reaction_force(show=False).savefig(img) elif tipo == 2: ss.show_axial_force(show=False).savefig(img) elif tipo == 3: ss.show_shear_force(show=False).savefig(img) elif tipo == 4: ss.show_bending_moment(show=False).savefig(img) elif tipo == 5: ss.show_displacement(show=False).savefig(img) img.seek(0) return send_file(img, mimetype='image/png')
def initializeLatticeShell(startPoint, latticeParam, xHexagons, yHexagons, force=10, theta=0, elasticModulus=17000000000, moment=5000000, area=0.0005, g=0, invertHex=True, saveDir=None): ''' This function takes in initial parameters for a hexagon lattice, creates a mesh structure using the anaStruct library object SystemElements(). First, the center points of hexagons in the lattice will be generated, the hexagon vertices will be saved in a custom NumPy array to save the center points and al 6 vertices. The numpy array will hold 7 tuples( 1 tuple for the center-point, 6 tuples for coordinates of each hexagon vertex. ) Args: (startPoint): (tuple): Tuple of dtype=np.float64 or dtype=np.float32 housing the original start point (bottom left) of the hexagon lattice to be constructed. (latticeParam): (float): The length of each 'sub triangle' length starting from the center of the hexagon to each vertex. (xHexagons): (int): Number of hexagons to be constructed in the x-direction in the lattice. (yHexagons): (int): Number of hexagons to be constructed in the y-direction in the lattice. Returns: (lattice): (SystemElements() Object): The system elements object containing all trusses defined and fully constrained. (lattice_coordinatews): (numpy array): Custom numpy array of shape=( xHexagons, yHexagons, 7, 2 ). Contains 7 coordinates per hexagon: Center coords, and vertex coordinates. ''' # Initialize finite element material parameters EA = elasticModulus * area EI = elasticModulus * moment # Initialize timer start = timeit.default_timer() # Initialize anaStruct.py SystemElements() object... # ss = SystemElements(figsize=(12,8), EA=15000.0, EI=5e3) ss = SystemElements(EA=EA, EI=EI) ''' EA - Standard axial stiffness of element EI - Standard bending stiffness of elements figsize - Matplotlibs standard figure size (inches) ''' # Initialize custom numpy array... lattice_coordinates = np.empty(shape=(xHexagons + 1, yHexagons, 7, 2)) # Take not of all elements that are already saved so we don't repeat them # Save initialized system elements points as an array to be referenfced when # creating new system elements to the FEM mesh. old_ss = [] # Initialize hexagon lattice centers: lattice_centers = getHexagonLatticeCenters(startPoint, latticeParam, xHexagons, yHexagons, invertHex=invertHex) print(lattice_centers) # Iterate through each hexagon center and fill lattice_coordinates numpy array for j in range(yHexagons): # Every odd numbered row (0 start counting) will have 1 extra hexagon to be drawn in. if j % 2 != 0: xHexagonCount = xHexagons + 1 else: xHexagonCount = xHexagons for i in range(xHexagonCount): # Get hexagon points curr_hexPoints = hexagonPoints(lattice_centers[i, j], latticeParam, invertHex=invertHex) # Initialize start point lattice_coordinates[i, j, 0] = lattice_centers[i, j] lattice_coordinates[i, j, 1:] = curr_hexPoints # Iterating through first hexagon being drawn if i == 0: # For even values: if j % 2 != 0: # Finds the point pair list of the right half of the hexagon point_pair_list = [ (curr_hexPoints[1], curr_hexPoints[0]), (curr_hexPoints[0], curr_hexPoints[5]), (curr_hexPoints[5], curr_hexPoints[4]), ] for k in range(3): # Check if current element is already added is_added, index = checkSystemElement( point_pair_list[k][0], point_pair_list[k][1], old_ss) # Check if element exists if is_added == False: ss.add_element(location=[ point_pair_list[k][0], point_pair_list[k][1] ], EA=EA, EI=EI, g=g) old_ss.append( (point_pair_list[k][0], point_pair_list[k][1])) else: print( "Point Pair {} has already been added at index {} of old_ss list." .format(curr_point_pair, index)) else: # Iterate through all point pairs: for k in range(6): curr_point_pair = (curr_hexPoints[k - 1], curr_hexPoints[k]) is_added, index = checkSystemElement( curr_point_pair[0], curr_point_pair[1], old_ss) # If element doesn't already exist, add it to the mesh if is_added == False: ss.add_element(location=[ curr_hexPoints[k - 1], curr_hexPoints[k] ], EA=EA, EI=EI, g=g) old_ss.append( (curr_hexPoints[k - 1], curr_hexPoints[k])) else: # save elements added # old_ss.append( curr_hexPoints[k-1], curr_hexPoints[k] ) # testing line -------------------- print( "Point Pair {} has already been added at index {} of old_ss list." .format(curr_point_pair, index)) # end testing line ------------------ elif j % 2 != 0 and i == xHexagons: # Uneven row numbers if j % 2 != 0: # Finds the point pair list of the right half of the hexagon point_pair_list = [ (curr_hexPoints[1], curr_hexPoints[2]), (curr_hexPoints[2], curr_hexPoints[3]), (curr_hexPoints[3], curr_hexPoints[4]), ] for k in range(3): # Check if current element is already added is_added, index = checkSystemElement( point_pair_list[k][0], point_pair_list[k][1], old_ss) # Check if element exists if is_added == False: ss.add_element(location=[ point_pair_list[k][0], point_pair_list[k][1] ], EA=EA, EI=EI, g=g) old_ss.append( (point_pair_list[k][0], point_pair_list[k][1])) else: print( "Point Pair {} has already been added at index {} of old_ss list." .format(curr_point_pair, index)) # Even hexagon values: else: for k in range(6): # check if current element is already added...if not, add it! curr_point_pair = (curr_hexPoints[k - 1], curr_hexPoints[k]) is_added, index = checkSystemElement( curr_point_pair[0], curr_point_pair[1], old_ss) # If element doesn't already exist, add it to the mesh if is_added == False: ss.add_element(location=[ curr_hexPoints[k - 1], curr_hexPoints[k] ], EA=EA, EI=EI, g=g) old_ss.append( (curr_hexPoints[k - 1], curr_hexPoints[k])) else: # save elements added # old_ss.append( curr_hexPoints[k-1], curr_hexPoints[k] ) # testing line -------------------- print( "Point Pair {} has already been added at index {} of old_ss list." .format(curr_point_pair, index)) # end testing line ------------------ # add all system elements and save point pairs else: for k in range(6): # check if current element is already added...if not, add it! curr_point_pair = (curr_hexPoints[k - 1], curr_hexPoints[k]) is_added, index = checkSystemElement( curr_point_pair[0], curr_point_pair[1], old_ss) # If element doesn't already exist, add it to the mesh if is_added == False: ss.add_element(location=[ curr_hexPoints[k - 1], curr_hexPoints[k] ], EA=EA, EI=EI, g=g) old_ss.append( (curr_hexPoints[k - 1], curr_hexPoints[k])) else: # save elements added # old_ss.append( curr_hexPoints[k-1], curr_hexPoints[k] ) # testing line -------------------- print( "Point Pair {} has already been added at index {} of old_ss list." .format(curr_point_pair, index)) # end testing line ------------------ end = timeit.default_timer() total_time = np.round((end - start), 2) print( "\n\nGenerating hexagon mesh of x-y dimensions, {}-{}, lattice parameter, {}, took {} seconds.\n\n" .format(xHexagons, yHexagons, latticeParam, total_time)) lowest_nodes = findLowestNodes(ss, startPoint, latticeParam, xHexagons, yHexagons) highest_nodes = findHighestNodes(ss, startPoint, latticeParam, xHexagons, yHexagons) # add supports and flattening elements for i in range(len(lowest_nodes)): ss.add_element(location=[lowest_nodes[i - 1][1], lowest_nodes[i][1]]) old_ss.append((lowest_nodes[i - 1], lowest_nodes[i])) # add fixed support on lowest nodes... ss.add_support_fixed(node_id=lowest_nodes[i][0]) # add forces and node locations for i in range(len(highest_nodes)): ss.add_element(location=[highest_nodes[i - 1][1], highest_nodes[i][1]]) old_ss.append((highest_nodes[i - 1], highest_nodes[i])) # add forces at highest nodes... # ss.q_load(q=-1, element_id=highest_nodes[i], direction='element') ss.point_load(node_id=highest_nodes[i][0], Fx=0, Fy=force, rotation=theta) # Solve and time it solveTimeStart = np.round(timeit.default_timer(), 2) ss.solve() solveTimeEnd = np.round(timeit.default_timer(), 2) total_solve_time = solveTimeEnd - solveTimeStart print( "\n\nSolving beam element model of x-y dimensions, {}-{}, lattice parameter, {}, took {} seconds.\n\n" .format(xHexagons, yHexagons, latticeParam, total_solve_time)) # Calculate average displacement of nodes totalDisplacement = 0 displacements = ss.get_node_displacements(node_id=0) for i in range(len(displacements)): totalDisplacement += np.sqrt(displacements[i][1]**2 + displacements[i][2]**2) averageDisplacements = totalDisplacement / len(displacements) print("\n\nAverage Node Displacement: {}mm".format(averageDisplacements * 1000)) if saveDir != None: diagnosticData = [] diagnosticData.append( "Hexagon Lattice ({}-x-hexagons,{}-y-hexagons)\n".format( xHexagons, yHexagons)) diagnosticData.append("Lattice Parameter: {}mm\n".format(latticeParam)) diagnosticData.append("Force: {}N\n".format(force)) diagnosticData.append("Elastic Modulus: {}MPa\n".format( elasticModulus / 1000)) diagnosticData.append("Second Moment of Area: {}\n".format(moment)) diagnosticData.append("Area: {}mm\n".format(area * 1000)) diagnosticData.append("Bending Stiffness: {}\n".format(elasticModulus * moment)) diagnosticData.append( "Average Displacement: {}mm\n".format(averageDisplacements)) diagnosticData.append("Mesh Generated in {}s\n".format(total_time)) diagnosticData.append( "Beam Element Model Solved in {}s\n".format(total_solve_time)) folderDir = snr.createFolder( saveDir, "a={}mm A={}mm f={}N E={}MPa".format(latticeParam, area, force, elasticModulus / 1000)) textFile = open("{}\\diagnostics.txt".format(folderDir), 'w') textFile.writelines(diagnosticData) textFile.close() # beam element model is solved in the call of this function. saveElementModel( ss, folderDir, "a={}mm A={}mm f={}N E={}MPa".format(latticeParam, area, force, elasticModulus / 1000)) return ss
def shear_design(Ast, B, D, Vu, fck, fy): FS = SystemElements() # Add beams to the system. FS.add_element(location=[0, 5], EA=15000, EI=5000) FS.add_element(location=[[0, 5], [5, 5]], EA=15000, EI=5000) FS.add_element(location=[[5, 5], [5, 0]], EA=15000, EI=5000) # Add a fixed support at node 1. FS.add_support_fixed(node_id=1) # Add a rotational spring support at node 4. FS.add_support_spring(node_id=4, translation=3, k=4000) # Add loads. FS.point_load(Fx=30, node_id=2) FS.q_load(q=-10, element_id=2) FS.q_load(q=-10, element_id=1) #ss.q_load(q=-10, element_id=4) #print(ss.node_ranges()) # Solve FS.solve() FS.get_element_results(element_id=1)['length'] FS.get_element_results(element_id=1)['Mmin'] deno = FS.get_element_results(element_id=1)['shear'] #breadth = randgen(300,600) #Asc = 0 #Ast = 0 #spacing = 150 #beam = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing) #Asc = beam.p_min() #Ast = beam.p_min() #beam1 = Beam(depth,breadth,Asc,Ast,15,415,415,3.14*10**2/4,spacing) #beam1.moment_capcity() #beam1.min_spacing() #beam1.max_spacing() #print(beam1.moment_capcity()*10**(-3)) #print(FS.get_element_results(element_id=1)['Mmax']) res = Beam_gene(depths) beam1 = Beam(depth, breadth, Asc, Ast, 15, 415, 415, 3.14 * 10**2 / 4, spacing) beam1.moment_capcity() beam1.min_spacing() beam1.max_spacing() # Add a fixed support at node 1. FS.add_support_fixed(node_id=1) # Add a rotational spring support at node 4. FS.add_support_spring(node_id=4, translation=3, k=4000) # Add loads. FS.point_load(Fx=30, node_id=2) FS.q_load(q=-10, element_id=2) FS.q_load(q=-10, element_id=1) #ss.q_load(q=-10, element_id=4) #print(ss.node_ranges()) # Solve FS.solve() FS.get_element_results(element_id=1)['length'] FS.get_element_results(element_id=1)['Mmin'] FS.get_element_results(element_id=1)['Mmax'] FS.get_element_results(element_id=1)['shear'] #print(beam1.moment_capcity()*10**(-3)) #print(FS.get_element_results(element_id=1)['Mmax']) C_D = ((beam1.moment_capcity()) * 10**(-3)) / (FS.get_element_results(element_id=1)['Mmax']) print(C_D)