예제 #1
0
    def setup(self, bottom, top):
        layer_params = yaml.load(self.param_str_)
        self._feat_stride = layer_params['feat_stride']
        self.anchor_generator = AnchorText()
        self._num_anchors = self.anchor_generator.anchor_num

        height, width = bottom[0].data.shape[-2:]
        if DEBUG:
            print 'AnchorTargetLayer: height', height, 'width', width

        A = self._num_anchors
        # labels
        top[0].reshape(1, 1, A * height, width)
        # bbox_targets
        top[1].reshape(1, A * 2, height, width)
        # bbox_inside_weights
        top[2].reshape(1, A * 2, height, width)
        # bbox_outside_weights
        top[3].reshape(1, A * 2, height, width)
        # sr_targets
        top[4].reshape(1, A, height, width)
        # sr_inside_weights
        top[5].reshape(1, A, height, width)
        # sr_outside_weights
        top[6].reshape(1, A, height, width)
예제 #2
0
    def setup(self, bottom, top):
        # parse the layer parameter string, which must be valid YAML
        layer_params = yaml.load(self.param_str)

        self._feat_stride = layer_params['feat_stride']
        self.anchor_generator=AnchorText()
        self._num_anchors = self.anchor_generator.anchor_num

        top[0].reshape(1, 4)
        top[1].reshape(1, 1, 1, 1)
class ProposalLayer(caffe.Layer):
    def setup(self, bottom, top):
        # parse the layer parameter string, which must be valid YAML
        layer_params = yaml.load(self.param_str_)

        self._feat_stride = layer_params['feat_stride']
        self.anchor_generator = AnchorText()
        self._num_anchors = self.anchor_generator.anchor_num

        top[0].reshape(1, 4)
        top[1].reshape(1, 1, 1, 1)
        top[2].reshape(1, 1, 1, 1)

    def forward(self, bottom, top):
        assert bottom[0].data.shape[0]==1, \
            'Only single item batches are supported'

        scores = bottom[0].data[:, self._num_anchors:, :, :]

        bbox_deltas = bottom[1].data
        im_info = bottom[2].data[0, :]
        height, width = scores.shape[-2:]

        sides = bottom[3].data
        sides = sides.transpose((0, 2, 3, 1)).reshape(-1, 1)

        anchors = self.anchor_generator.locate_anchors((height, width),
                                                       self._feat_stride)

        scores = scores.transpose((0, 2, 3, 1)).reshape(-1, 1)
        bbox_deltas = bbox_deltas.transpose((0, 2, 3, 1)).reshape((-1, 2))

        proposals = self.anchor_generator.apply_deltas_to_anchors(
            bbox_deltas, anchors)

        # clip the proposals in excess of the boundaries of the image
        proposals = clip_boxes(proposals, im_info[:2])

        blob = proposals.astype(np.float32, copy=False)
        top[0].reshape(*(blob.shape))
        top[0].data[...] = blob

        top[1].reshape(*(scores.shape))
        top[1].data[...] = scores

        top[2].reshape(*(sides.shape))
        top[2].data[...] = sides

    def backward(self, top, propagate_down, bottom):
        pass

    def reshape(self, bottom, top):
        pass
예제 #4
0
    def setup(self, bottom, top):
        layer_params = yaml.load(self.param_str_)
        anchor_scales = layer_params.get('scales', (8, 16, 32))
        self.anchor_generator = AnchorText()
        #self._anchors = generate_anchors(scales=np.array(anchor_scales))
        #self._num_anchors = self._anchors.shape[0]
        self._anchors = self.anchor_generator.basic_anchors()
        self._num_anchors = self.anchor_generator.anchor_num
        self._feat_stride = layer_params['feat_stride']

        if cfg.TRAIN.DEBUG:
            print 'anchors:'
            print self._anchors
            print 'anchor shapes:'
            print np.hstack((
                self._anchors[:, 2::4] - self._anchors[:, 0::4],
                self._anchors[:, 3::4] - self._anchors[:, 1::4],
            ))
            print "rpn_cls_score shapes:"
            print bottom[0].data.shape
            self._counts = cfg.EPS
            self._sums = np.zeros((1, 2))
            self._squared_sums = np.zeros((1, 2))
            self._fg_sum = 0
            self._bg_sum = 0
            self._count = 0

        # allow boxes to sit over the edge by a small amount
        self._allowed_border = layer_params.get('allowed_border', 0)

        height, width = bottom[0].data.shape[-2:]
        if cfg.TRAIN.DEBUG:
            print 'AnchorTargetLayer: height', height, 'width', width

        A = self._num_anchors
        # labels
        top[0].reshape(1, 1, A * height, width)
        # bbox_targets
        top[1].reshape(1, A * 2, height, width)
        # bbox_inside_weights
        top[2].reshape(1, A * 2, height, width)
        # bbox_outside_weights
        top[3].reshape(1, A * 2, height, width)
        # rpn_xside_targets
        top[4].reshape(1, A, height, width)
        # rpn_xside_inside_weight
        top[5].reshape(1, A, height, width)
        # rpn_xside_outside_weight
        top[6].reshape(1, A, height, width)
예제 #5
0
class ProposalLayer(caffe.Layer):
    def setup(self, bottom, top):
        # parse the layer parameter string, which must be valid YAML
        layer_params = yaml.load(self.param_str_)

        self._feat_stride = layer_params['feat_stride']
        self.anchor_generator=AnchorText()
        self._num_anchors = self.anchor_generator.anchor_num

        top[0].reshape(1, 4)
        top[1].reshape(1, 1, 1, 1)

    def forward(self, bottom, top):
        assert bottom[0].data.shape[0]==1, \
            'Only single item batches are supported'

        scores = bottom[0].data[:, self._num_anchors:, :, :]

        bbox_deltas = bottom[1].data
        im_info = bottom[2].data[0, :]
        height, width = scores.shape[-2:]

        anchors=self.anchor_generator.locate_anchors((height, width), self._feat_stride)

        scores=scores.transpose((0, 2, 3, 1)).reshape(-1, 1)
        bbox_deltas=bbox_deltas.transpose((0, 2, 3, 1)).reshape((-1, 2))

        proposals=self.anchor_generator.apply_deltas_to_anchors(bbox_deltas, anchors)

        # clip the proposals in excess of the boundaries of the image
        proposals=clip_boxes(proposals, im_info[:2])

        blob=proposals.astype(np.float32, copy=False)
        top[0].reshape(*(blob.shape))
        top[0].data[...]=blob

        top[1].reshape(*(scores.shape))
        top[1].data[...]=scores

    def backward(self, top, propagate_down, bottom):
        pass

    def reshape(self, bottom, top):
        pass
예제 #6
0
    def setup(self, bottom, top):
        # parse the layer parameter string, which must be valid YAML
        layer_params = yaml.load(self.param_str_)

        self._feat_stride = layer_params['feat_stride']
        self.anchor_generator=AnchorText()
        self._num_anchors = self.anchor_generator.anchor_num

        top[0].reshape(1, 4)
        top[1].reshape(1, 1, 1, 1)
    def setup(self, bottom, top):
        # parse the layer parameter string, which must be valid YAML
        layer_params = yaml.load(self.param_str_)

        self._train_images = layer_params['train_images']
        self.anchor_generator = AnchorText()
        self._num_anchors = self.anchor_generator.anchor_num

        print "self._train_images", self._train_images
        # data
        top[0].reshape(1, 3, cfg.scale, cfg.scale)
        # im_info
        top[1].reshape(1, 2)
        # gt_boxes
        top[1].reshape(1, 4)
예제 #8
0
class AnchorTargetLayer(caffe.Layer):
    """
    Assign anchors to ground-truth targets. Produces anchor classification
    labels and bounding-box regression targets.
    """
    def setup(self, bottom, top):
        layer_params = yaml.load(self.param_str_)
        self._feat_stride = layer_params['feat_stride']
        self.anchor_generator = AnchorText()
        self._num_anchors = self.anchor_generator.anchor_num

        height, width = bottom[0].data.shape[-2:]
        if DEBUG:
            print 'AnchorTargetLayer: height', height, 'width', width

        A = self._num_anchors
        # labels
        top[0].reshape(1, 1, A * height, width)
        # bbox_targets
        top[1].reshape(1, A * 2, height, width)
        # bbox_inside_weights
        top[2].reshape(1, A * 2, height, width)
        # bbox_outside_weights
        top[3].reshape(1, A * 2, height, width)
        # sr_targets
        top[4].reshape(1, A, height, width)
        # sr_inside_weights
        top[5].reshape(1, A, height, width)
        # sr_outside_weights
        top[6].reshape(1, A, height, width)

    def forward(self, bottom, top):

        assert bottom[0].data.shape[0] == 1, \
            'Only single item batches are supported'

        # map of shape (..., H, W)
        height, width = bottom[0].data.shape[-2:]
        # GT boxes (x1, y1, x2, y2)
        gt_boxes = bottom[1].data
        # im_info
        im_info = bottom[2].data[0, :]
        # side_pos
        side_pos = bottom[3].data

        if DEBUG:
            print ''
            print 'im_size: ({}, {})'.format(im_info[0], im_info[1])
            print 'height, width: ({}, {})'.format(height, width)
            print 'rpn: gt_boxes.shape', gt_boxes.shape
            print 'rpn: gt_boxes'
            print gt_boxes
            print 'rpn: side_pos.shape', side_pos.shape
            print 'rpn: side_pos'
            print side_pos

        A = self._num_anchors
        all_anchors = self.anchor_generator.locate_anchors((height, width),
                                                           self._feat_stride)
        total_anchors = all_anchors.shape[0]

        # only keep anchors inside the image
        inds_inside = np.where((all_anchors[:, 0] >= 0)
                               & (all_anchors[:, 1] >= 0)
                               & (all_anchors[:, 2] < im_info[1]) &  # width
                               (all_anchors[:, 3] < im_info[0])  # height
                               )[0]
        if DEBUG:
            print 'total_anchors', total_anchors
            print 'inside_anchors', len(inds_inside)

        # keep only inside anchors
        anchors = all_anchors[inds_inside, :]
        if DEBUG:
            print 'anchors.shape', anchors.shape

        # label: 1 is positive, 0 is negative, -1 is dont care
        labels = np.empty((len(inds_inside), ), dtype=np.float32)
        labels.fill(-1)

        # overlaps between the anchors and the gt boxes
        # overlaps (ex, gt)
        overlaps = bbox_overlaps(
            np.ascontiguousarray(anchors, dtype=np.float),
            np.ascontiguousarray(gt_boxes, dtype=np.float))
        argmax_overlaps = overlaps.argmax(axis=1)
        max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps]
        gt_argmax_overlaps = overlaps.argmax(axis=0)
        init_gt_argmax_overlaps = gt_argmax_overlaps
        gt_max_overlaps = overlaps[gt_argmax_overlaps,
                                   np.arange(overlaps.shape[1])]
        gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0]

        if DEBUG:
            print "overlaps shape", overlaps.shape
            print "argmax_overlaps shape", argmax_overlaps.shape
            print "gt_argmax_overlaps shape", gt_argmax_overlaps.shape
            print "init_gt_argmax_overlaps shape", init_gt_argmax_overlaps.shape
            print "init_gt_argmax_overlaps"
            print init_gt_argmax_overlaps
            print "max overlaps anchors"
            print anchors[init_gt_argmax_overlaps]

        # assign bg labels first so that positive labels can clobber them
        labels[max_overlaps < cfg.TRAIN_RPN_NEGATIVE_OVERLAP] = 0

        # fg label: for each gt, anchor with highest overlap
        labels[gt_argmax_overlaps] = 1

        # fg label: above threshold IOU
        labels[max_overlaps >= cfg.TRAIN_RPN_POSITIVE_OVERLAP] = 1

        if DEBUG:
            print "before sample"
            print "positive anchor num", np.sum(labels == 1)
            print "negative anchor num", np.sum(labels == 0)

        # sample positive labels if we have too many
        num_fg = int(cfg.TRAIN_RPN_FG_FRACTION * cfg.TRAIN_RPN_BATCHSIZE)
        fg_inds = np.where(labels == 1)[0]
        if len(fg_inds) > num_fg:
            disable_inds = npr.choice(fg_inds,
                                      size=(len(fg_inds) - num_fg),
                                      replace=False)
            labels[disable_inds] = -1

        # sample negative labels if we have too many
        num_bg = cfg.TRAIN_RPN_BATCHSIZE - np.sum(labels == 1)
        bg_inds = np.where(labels == 0)[0]
        if len(bg_inds) > num_bg:
            disable_inds = npr.choice(bg_inds,
                                      size=(len(bg_inds) - num_bg),
                                      replace=False)
            labels[disable_inds] = -1
        if DEBUG:
            print "after sample"
            print "positive anchor num", np.sum(labels == 1)
            print "positive anchor", np.where(labels == 1)[0]
            print "negative anchor num", np.sum(labels == 0)

        bbox_targets = np.zeros((len(inds_inside), 2), dtype=np.float32)
        bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :])

        bbox_inside_weights = np.zeros((len(inds_inside), 2), dtype=np.float32)
        bbox_inside_weights[labels == 1, :] = np.array([1, 1])

        bbox_outside_weights = np.zeros((len(inds_inside), 2),
                                        dtype=np.float32)
        bbox_outside_weights[labels == 1, :] = np.array([1, 1])

        if DEBUG:
            print "before map:"
            print "labels.shape", labels.shape
            print "bbox_targets.shape", bbox_targets.shape
            print "bbox_inside_weights.shape", bbox_inside_weights.shape
            print "bbox_outside_weights.shape", bbox_outside_weights.shape

        # map up to original set of anchors
        labels = _unmap(labels, total_anchors, inds_inside, fill=-1)
        bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)
        bbox_inside_weights = _unmap(bbox_inside_weights,
                                     total_anchors,
                                     inds_inside,
                                     fill=0)
        bbox_outside_weights = _unmap(bbox_outside_weights,
                                      total_anchors,
                                      inds_inside,
                                      fill=0)

        max_anchor_inds = inds_inside[init_gt_argmax_overlaps]
        if DEBUG:
            print "max anchors"
            print all_anchors[max_anchor_inds]

        sr_targets = np.empty((total_anchors, ), dtype=np.float32)
        sr_targets.fill(0)

        sr_anchor_inds = []
        for i in range(len(side_pos)):
            if side_pos[i] < 0:
                continue
            inds = max_anchor_inds[i]
            side = side_pos[i]
            line_num = int(inds) / int(10 * width)
            for x in [-10, 0, 10]:
                tmp_inds = inds + x
                tmp_line_num = int(tmp_inds) / int(10 * width)
                if tmp_line_num == line_num:
                    center = (all_anchors[tmp_inds][0] +
                              all_anchors[tmp_inds][2]) / 2.0
                    if abs(center - side) > cfg.TRAIN_SIDE_REFINE_MAX:
                        continue
                    sr_anchor_inds.append(tmp_inds)
                    sr_targets[tmp_inds] = (side -
                                            center) / cfg.TEXT_PROPOSALS_WIDTH

        sr_anchor_inds = [
            x for x in sr_anchor_inds if sr_anchor_inds.count(x) == 1
        ]
        if len(sr_anchor_inds) > cfg.TRAIN_SR_BATCH:
            sr_anchor_inds = npr.choice(sr_anchor_inds,
                                        size=(cfg.TRAIN_SR_BATCH),
                                        replace=False)

        sr_inside_weights = np.empty((total_anchors, ), dtype=np.float32)
        sr_inside_weights.fill(0)
        sr_inside_weights[sr_anchor_inds] = 1
        sr_outside_weights = np.empty((total_anchors, ), dtype=np.float32)
        sr_outside_weights.fill(0)
        sr_outside_weights[sr_anchor_inds] = 1

        if DEBUG:
            print "after map:"
            print "labels.shape", labels.shape
            print "bbox_targets.shape", bbox_targets.shape
            print "bbox_inside_weights.shape", bbox_inside_weights.shape
            print "bbox_outside_weights.shape", bbox_outside_weights.shape
            print "sr_targets.shape", sr_targets.shape
            print "sr_inside_weights.shape", sr_inside_weights.shape
            print "sr_outside_weights.shape", sr_outside_weights.shape
            print "side refinement:"
            print "sr_anchor_inds", sr_anchor_inds
            print "sr_anchor", all_anchors[sr_anchor_inds]
            print "sr_targets", sr_targets[sr_anchor_inds]
            print "sr_inside_weights", sr_inside_weights[sr_anchor_inds]
            print "sr_outside_weights", sr_outside_weights[sr_anchor_inds]

        # labels
        labels = labels.reshape((1, height, width, A)).transpose(0, 3, 1, 2)
        labels = labels.reshape((1, 1, A * height, width))
        top[0].reshape(*labels.shape)
        top[0].data[...] = labels

        # bbox_targets
        bbox_targets = bbox_targets \
            .reshape((1, height, width, A * 2)).transpose(0, 3, 1, 2)
        top[1].reshape(*bbox_targets.shape)
        top[1].data[...] = bbox_targets

        # bbox_inside_weights
        bbox_inside_weights = bbox_inside_weights \
            .reshape((1, height, width, A * 2)).transpose(0, 3, 1, 2)
        assert bbox_inside_weights.shape[2] == height
        assert bbox_inside_weights.shape[3] == width
        top[2].reshape(*bbox_inside_weights.shape)
        top[2].data[...] = bbox_inside_weights

        # bbox_outside_weights
        bbox_outside_weights = bbox_outside_weights \
            .reshape((1, height, width, A * 2)).transpose(0, 3, 1, 2)
        assert bbox_outside_weights.shape[2] == height
        assert bbox_outside_weights.shape[3] == width
        top[3].reshape(*bbox_outside_weights.shape)
        top[3].data[...] = bbox_outside_weights

        # sr_targets
        sr_targets = sr_targets \
            .reshape((1, height, width, A)).transpose(0, 3, 1, 2)
        top[4].reshape(*sr_targets.shape)
        top[4].data[...] = sr_targets

        # sr_inside_weights
        sr_inside_weights = sr_inside_weights \
            .reshape((1, height, width, A)).transpose(0, 3, 1, 2)
        assert sr_inside_weights.shape[2] == height
        assert sr_inside_weights.shape[3] == width
        top[5].reshape(*sr_inside_weights.shape)
        top[5].data[...] = sr_inside_weights

        # sr_outside_weights
        sr_outside_weights = sr_outside_weights \
            .reshape((1, height, width, A)).transpose(0, 3, 1, 2)
        assert sr_outside_weights.shape[2] == height
        assert sr_outside_weights.shape[3] == width
        top[6].reshape(*sr_outside_weights.shape)
        top[6].data[...] = sr_outside_weights

    def backward(self, top, propagate_down, bottom):
        """This layer does not propagate gradients."""
        pass

    def reshape(self, bottom, top):
        """Reshaping happens during the call to forward."""
        pass
예제 #9
0
class AnchorTargetLayer(caffe.Layer):
    """
    Assign anchors to ground-truth targets. Produces anchor classification
    labels and bounding-box regression targets.
    """
    def setup(self, bottom, top):
        layer_params = yaml.load(self.param_str_)
        anchor_scales = layer_params.get('scales', (8, 16, 32))
        self.anchor_generator = AnchorText()
        #self._anchors = generate_anchors(scales=np.array(anchor_scales))
        #self._num_anchors = self._anchors.shape[0]
        self._anchors = self.anchor_generator.basic_anchors()
        self._num_anchors = self.anchor_generator.anchor_num
        self._feat_stride = layer_params['feat_stride']

        if cfg.TRAIN.DEBUG:
            print 'anchors:'
            print self._anchors
            print 'anchor shapes:'
            print np.hstack((
                self._anchors[:, 2::4] - self._anchors[:, 0::4],
                self._anchors[:, 3::4] - self._anchors[:, 1::4],
            ))
            print "rpn_cls_score shapes:"
            print bottom[0].data.shape
            self._counts = cfg.EPS
            self._sums = np.zeros((1, 2))
            self._squared_sums = np.zeros((1, 2))
            self._fg_sum = 0
            self._bg_sum = 0
            self._count = 0

        # allow boxes to sit over the edge by a small amount
        self._allowed_border = layer_params.get('allowed_border', 0)

        height, width = bottom[0].data.shape[-2:]
        if cfg.TRAIN.DEBUG:
            print 'AnchorTargetLayer: height', height, 'width', width

        A = self._num_anchors
        # labels
        top[0].reshape(1, 1, A * height, width)
        # bbox_targets
        top[1].reshape(1, A * 2, height, width)
        # bbox_inside_weights
        top[2].reshape(1, A * 2, height, width)
        # bbox_outside_weights
        top[3].reshape(1, A * 2, height, width)
        # rpn_xside_targets
        top[4].reshape(1, A, height, width)
        # rpn_xside_inside_weight
        top[5].reshape(1, A, height, width)
        # rpn_xside_outside_weight
        top[6].reshape(1, A, height, width)

    def forward(self, bottom, top):
        # Algorithm:
        #
        # for each (H, W) location i
        #   generate 9 anchor boxes centered on cell i
        #   apply predicted bbox deltas at cell i to each of the 9 anchors
        # filter out-of-image anchors
        # measure GT overlap

        assert bottom[0].data.shape[0] == 1, \
            'Only single item batches are supported'

        # map of shape (..., H, W)
        height, width = bottom[0].data.shape[-2:]
        # GT boxes (x1, y1, x2, y2, label)
        gt_boxes = bottom[1].data
        # im_info
        im_info = bottom[2].data[0, :]
        # xsides added by youlie
        xside = bottom[4].data
        if cfg.TRAIN.DEBUG:
            print 'AnchorTargetLayer.xside ctn {}'.format(xside)
            print 'AnchorTargetLayer.gt_boxes ctn {}'.format(gt_boxes)

        if cfg.TRAIN.DEBUG:
            print 'bottom 0 shape {}'.format(bottom[0].data.shape)
            print 'im_size: ({}, {})'.format(im_info[0], im_info[1])
            print 'scale: {}'.format(im_info[2])
            print 'height, width: ({}, {})'.format(height, width)
            print 'rpn: gt_boxes.shape', gt_boxes.shape
            print 'shape.xside.shape {}, gt_boxes.shape {}'.format(
                xside.shape, gt_boxes.shape)
            print 'value.xside.value {}, gt_boxes.value {}'.format(
                xside, gt_boxes)
            print 'rpn: gt_boxes.ctn', gt_boxes
            print 'xside ctn {}'.format(xside)

        # 1. Generate proposals from bbox deltas and shifted anchors
        shift_x = np.arange(0, width) * self._feat_stride
        shift_y = np.arange(0, height) * self._feat_stride
        shift_x, shift_y = np.meshgrid(shift_x, shift_y)
        shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(),
                            shift_y.ravel())).transpose()
        # add A anchors (1, A, 4) to
        # cell K shifts (K, 1, 4) to get
        # shift anchors (K, A, 4)
        # reshape to (K*A, 4) shifted anchors
        A = self._num_anchors
        K = shifts.shape[0]  # (height * width)
        all_anchors = (self._anchors.reshape((1, A, 4)) + shifts.reshape(
            (1, K, 4)).transpose((1, 0, 2)))

        if cfg.TRAIN.DEBUG:
            print "shift shape: {}".format(shifts.shape)
            print "shift re shape: {}".format(shifts.reshape((1, K, 4)).shape)
            print "shift re transpose shape: {}".format(
                shifts.reshape((1, K, 4)).transpose(1, 0, 2).shape)
            print "shift re transpose shape type: {}".format(
                type(shifts.reshape((1, K, 4)).transpose(1, 0, 2)))
            print "anchors shape: {}".format(self._anchors.shape)
            print "anchors re shape: {}".format(
                self._anchors.reshape((1, A, 4)).shape)
            print "anchors re shape type: {}".format(
                type(self._anchors.reshape((1, A, 4))))
            print "all_anchors shape: {}".format(all_anchors.shape)

        all_anchors = all_anchors.reshape((K * A, 4))
        total_anchors = int(K * A)

        # only keep anchors inside the image
        inds_inside = np.where(
            (all_anchors[:, 0] >= -self._allowed_border)
            & (all_anchors[:, 1] >= -self._allowed_border)
            & (all_anchors[:, 2] < im_info[1] + self._allowed_border)
            &  # width
            (all_anchors[:, 3] < im_info[0] + self._allowed_border)  # height
        )[0]

        if cfg.TRAIN.DEBUG:
            print 'total_anchors', total_anchors
            print 'inds_inside', len(inds_inside)

        # keep only inside anchors
        anchors = all_anchors[inds_inside, :]
        if cfg.TRAIN.DEBUG:
            print 'anchors.shape', anchors.shape

        # label: 1 is positive, 0 is negative, -1 is dont care
        labels = np.empty((len(inds_inside), ), dtype=np.float32)
        labels.fill(-1)

        # overlaps between the anchors and the gt boxes
        # overlaps (ex, gt)

        if cfg.TRAIN.DEBUG:
            print 'anchors.shape', anchors.shape
            print 'gt_boxes.shape', gt_boxes.shape

        overlaps = bbox_overlaps(
            np.ascontiguousarray(anchors, dtype=np.float),
            np.ascontiguousarray(gt_boxes, dtype=np.float))

        if cfg.TRAIN.DEBUG:
            print 'overlaps shape: {}'.format(overlaps.shape)
            print 'overlaps ctn: {}'.format(overlaps)

        # base on anchors, which gt_boxes matches most
        argmax_overlaps = overlaps.argmax(axis=1)
        #max_overlaps: anchor->gt_box max value
        max_overlaps = overlaps[np.arange(len(inds_inside)), argmax_overlaps]

        if cfg.TRAIN.DEBUG:
            print 'argmax_overlaps shape: {}'.format(argmax_overlaps.shape)
            print 'max_overlaps shape: {}'.format(max_overlaps.shape)

        # base on gt_boxes, which anchors matches most
        gt_argmax_overlaps = overlaps.argmax(axis=0)
        #gt_max_overlaps: gt_box max -> anchor value
        gt_max_overlaps = overlaps[gt_argmax_overlaps,
                                   np.arange(overlaps.shape[1])]

        if cfg.TRAIN.DEBUG:
            print 'gt_argmax_overlaps shape: {}'.format(
                gt_argmax_overlaps.shape)
            print 'gt_max_overlaps shape: {}'.format(gt_max_overlaps.shape)

        gt_argmax_overlaps = np.where(overlaps == gt_max_overlaps)[0]

        left_side_xside_idx = np.where(gt_boxes[:, 0] == xside[:, 0])[0]
        left_side_less_1_xside_idx = np.where(gt_boxes[:, 0] == xside[:, 0] +
                                              1)[0]
        right_side_xside_idx = np.where(gt_boxes[:, 2] == xside[:, 0])[0]
        if cfg.TRAIN.DEBUG:
            print "AnchorTargetLayer left_side_xside_idx:{}, left_side_less_1_xside_idx:{}, right_side_xside_idx:{}".\
                format(left_side_xside_idx, left_side_less_1_xside_idx, right_side_xside_idx)

            print "AnchorTargetLayer shape left_side_xside_idx:{}, left_side_less_1_xside_idx:{}, right_side_xside_idx:{}".\
                format(left_side_xside_idx.shape, left_side_less_1_xside_idx.shape, right_side_xside_idx.shape)

        left_side_xside_idx = np.append(left_side_xside_idx,
                                        left_side_less_1_xside_idx)
        if len(left_side_xside_idx) != len(right_side_xside_idx):
            print "AnchorTargetLayer debug shape left_side_xside_idx:{}, left_side_less_1_xside_idx:{}, \
                right_side_xside_idx:{}"                                        .\
                format(left_side_xside_idx.shape, left_side_less_1_xside_idx.shape, right_side_xside_idx.shape)

        _side_xside_idx = np.append(left_side_xside_idx, right_side_xside_idx)
        xside_labels = np.copy(labels)
        anchor_contain_idx = np.in1d(argmax_overlaps, _side_xside_idx)
        positive_xside_idx = np.where(anchor_contain_idx != 0)[0]
        negative_xside_idx = np.where(anchor_contain_idx == 0)[0]
        xside_labels[positive_xside_idx] = 1

        anchor_xside_targets = np.zeros((len(inds_inside), 1),
                                        dtype=np.float32)
        anchor_xside_targets = _compute_xside_targets(
            anchors, xside[argmax_overlaps, :])

        if not cfg.TRAIN.RPN_CLOBBER_POSITIVES:
            # assign bg labels first so that positive labels can clobber them
            labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0
        xside_labels[max_overlaps <= cfg.TRAIN.RPN_XSIDE_NEGATIVE_OVERLAP] = -1

        # fg label: for each gt, anchor with highest overlap
        labels[gt_argmax_overlaps] = 1

        # fg label: above threshold IOU
        labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1
        xside_labels[max_overlaps >= cfg.TRAIN.RPN_POSITIVE_OVERLAP] = 1

        if cfg.TRAIN.RPN_CLOBBER_POSITIVES:
            # assign bg labels last so that negative labels can clobber positives
            labels[max_overlaps < cfg.TRAIN.RPN_NEGATIVE_OVERLAP] = 0

        # subsample positive labels if we have too many
        num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE)
        fg_inds = np.where(labels == 1)[0]
        if len(fg_inds) > num_fg:
            disable_inds = npr.choice(fg_inds,
                                      size=(len(fg_inds) - num_fg),
                                      replace=False)
            labels[disable_inds] = -1
            print "cut positive was %s inds, disabling %s, now %s inds" % (
                len(fg_inds), len(disable_inds), np.sum(labels == 1))

        #try to subsample positive xside_labels if we have too many
        num_fg = int(cfg.TRAIN.RPN_FG_FRACTION * cfg.TRAIN.RPN_BATCHSIZE)
        fg_inds = np.where(xside_labels == 1)[0]
        if len(fg_inds) > num_fg:
            disable_inds = npr.choice(fg_inds,
                                      size=(len(fg_inds) - num_fg),
                                      replace=False)
            xside_labels[disable_inds] = -1
            print "xside labels cut positive was %s inds, disabling %s, now %s inds" % (
                len(fg_inds), len(disable_inds), np.sum(labels == 1))
            xside_labels[disable_inds] = -1

        # subsample negative labels if we have too many
        num_bg = cfg.TRAIN.RPN_BATCHSIZE - np.sum(labels == 1)
        bg_inds = np.where(labels == 0)[0]
        if len(bg_inds) > num_bg:
            disable_inds = npr.choice(bg_inds,
                                      size=(len(bg_inds) - num_bg),
                                      replace=False)
            labels[disable_inds] = -1
            print "cut negative was %s inds, disabling %s, now %s inds" % (
                len(bg_inds), len(disable_inds), np.sum(labels == 0))

        xside_labels[negative_xside_idx] = -1

        _valid_xside_idx = np.where(xside_labels == 1)
        anchor_xside_targets_valid = anchor_xside_targets[_valid_xside_idx, :]
        bbox_targets = np.zeros((len(inds_inside), 2), dtype=np.float32)

        bbox_targets = _compute_v_targets(anchors,
                                          gt_boxes[argmax_overlaps, :])
        bbox_inside_weights = np.zeros((len(inds_inside), 2), dtype=np.float32)
        bbox_inside_weights[labels == 1, :] = np.array(
            cfg.TRAIN.RPN_BBOX_INSIDE_WEIGHTS)

        bbox_outside_weights = np.zeros((len(inds_inside), 2),
                                        dtype=np.float32)
        if cfg.TRAIN.RPN_POSITIVE_WEIGHT < 0:
            # uniform weighting of examples (given non-uniform sampling)
            num_examples = np.sum(labels > 0)
            positive_weights = np.ones((1, 2)) * 1.0 / (num_examples + 1)
            negative_weights = np.ones((1, 2)) * 1.0 / (num_examples + 1)
        else:
            assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) &
                    (cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1))
            positive_weights = (cfg.TRAIN.RPN_POSITIVE_WEIGHT /
                                np.sum(labels == 1))
            negative_weights = ((1.0 - cfg.TRAIN.RPN_POSITIVE_WEIGHT) /
                                np.sum(labels == 0))
        bbox_outside_weights[labels == 1, :] = positive_weights
        bbox_outside_weights[labels == 0, :] = negative_weights

        if cfg.TRAIN.DEBUG:
            self._sums += bbox_targets[labels == 1, :].sum(axis=0)
            self._squared_sums += (bbox_targets[labels == 1, :]**2).sum(axis=0)
            self._counts += np.sum(labels == 1)
            means = self._sums / self._counts
            stds = np.sqrt(self._squared_sums / self._counts - means**2)
            print 'means of (target_v_c, target_v_h):'
            print means
            print 'stdevs of (target_v_c, target_v_h):'
            print stds

        bbox_xside_inside_weights = np.zeros((len(inds_inside), 1),
                                             dtype=np.float32)
        bbox_xside_inside_weights[xside_labels == 1, :] = np.array(
            cfg.TRAIN.RPN_BBOX_XSIDE_INSIDE_WEIGHTS)

        bbox_xside_outside_weights = np.zeros((len(inds_inside), 1),
                                              dtype=np.float32)
        if cfg.TRAIN.RPN_POSITIVE_WEIGHT < 0:
            # uniform weighting of examples (given non-uniform sampling)
            num_examples = np.sum(xside_labels > 0)
            num_examples_v1 = np.sum(xside_labels >= 0)
            print "bbox_xside_outside_weights num_examples_1:{}, num_examples_01:{}".format(
                num_examples, num_examples_v1)
            print "bbox_xside_inside_weights label eq 1: {}".format(
                (xside_labels == 1).shape)
            positive_weights = np.ones((1, 1)) * 1.0 / (num_examples + 1)
            negative_weights = np.ones((1, 1)) * 1.0 / (num_examples + 1)
        else:
            assert ((cfg.TRAIN.RPN_POSITIVE_WEIGHT > 0) &
                    (cfg.TRAIN.RPN_POSITIVE_WEIGHT < 1))
            positive_weights = (cfg.TRAIN.RPN_POSITIVE_WEIGHT /
                                np.sum(xside_labels == 1))
            negative_weights = ((1.0 - cfg.TRAIN.RPN_POSITIVE_WEIGHT) /
                                np.sum(xside_labels == 0))
        bbox_xside_outside_weights[xside_labels == 1, :] = positive_weights
        bbox_xside_outside_weights[xside_labels == 0, :] = negative_weights

        ### map up to original set of anchors
        labels = _unmap(labels, total_anchors, inds_inside, fill=-1)
        bbox_targets = _unmap(bbox_targets, total_anchors, inds_inside, fill=0)
        bbox_inside_weights = _unmap(bbox_inside_weights,
                                     total_anchors,
                                     inds_inside,
                                     fill=0)
        bbox_outside_weights = _unmap(bbox_outside_weights,
                                      total_anchors,
                                      inds_inside,
                                      fill=0)
        anchor_xside_targets = _unmap(anchor_xside_targets,
                                      total_anchors,
                                      inds_inside,
                                      fill=0)

        if cfg.TRAIN.DEBUG:
            print "anchor_xside_targets 1 shape:", anchor_xside_targets.shape

        bbox_xside_inside_weights = _unmap(bbox_xside_inside_weights,
                                           total_anchors,
                                           inds_inside,
                                           fill=0)
        bbox_xside_outside_weights = _unmap(bbox_xside_outside_weights,
                                            total_anchors,
                                            inds_inside,
                                            fill=0)

        if cfg.TRAIN.DEBUG:
            print 'rpn: max max_overlap', np.max(max_overlaps)
            print 'rpn: num_positive', np.sum(labels == 1)
            print 'rpn: num_negative', np.sum(labels == 0)
            self._fg_sum += np.sum(labels == 1)
            self._bg_sum += np.sum(labels == 0)
            self._count += 1
            print 'rpn: num_positive avg', self._fg_sum / self._count
            print 'rpn: num_negative avg', self._bg_sum / self._count

        # labels
        labels = labels.reshape((1, height, width, A)).transpose(0, 3, 1, 2)
        labels = labels.reshape((1, 1, A * height, width))

        top[0].reshape(*labels.shape)
        top[0].data[...] = labels

        # bbox_targets
        bbox_targets = bbox_targets \
            .reshape((1, height, width, A * 2)).transpose(0, 3, 1, 2)
        top[1].reshape(*bbox_targets.shape)
        top[1].data[...] = bbox_targets

        # bbox_inside_weights
        bbox_inside_weights = bbox_inside_weights \
            .reshape((1, height, width, A * 2)).transpose(0, 3, 1, 2)
        assert bbox_inside_weights.shape[2] == height
        assert bbox_inside_weights.shape[3] == width
        top[2].reshape(*bbox_inside_weights.shape)
        top[2].data[...] = bbox_inside_weights

        # bbox_outside_weights
        bbox_outside_weights = bbox_outside_weights \
            .reshape((1, height, width, A * 2)).transpose(0, 3, 1, 2)
        assert bbox_outside_weights.shape[2] == height
        assert bbox_outside_weights.shape[3] == width
        top[3].reshape(*bbox_outside_weights.shape)
        top[3].data[...] = bbox_outside_weights

        # bbox_xside_targets
        anchor_xside_targets = anchor_xside_targets \
            .reshape((1, height, width, A)).transpose(0, 3, 1, 2)
        top[4].reshape(*anchor_xside_targets.shape)
        top[4].data[...] = anchor_xside_targets
        if cfg.TRAIN.DEBUG:
            print "anchor_xside_targets shape_2:", anchor_xside_targets.shape

        bbox_xside_inside_weights = bbox_xside_inside_weights \
            .reshape((1, height, width, A)).transpose(0, 3, 1, 2)
        assert bbox_xside_inside_weights.shape[2] == height
        assert bbox_xside_inside_weights.shape[3] == width
        top[5].reshape(*bbox_xside_inside_weights.shape)
        top[5].data[...] = bbox_xside_inside_weights
        if cfg.TRAIN.DEBUG:
            print "bbox_xside_inside_weights shape:", bbox_xside_inside_weights.shape

        bbox_xside_outside_weights = bbox_xside_outside_weights \
            .reshape((1, height, width, A)).transpose(0, 3, 1, 2)
        assert bbox_xside_outside_weights.shape[2] == height
        assert bbox_xside_outside_weights.shape[3] == width
        top[6].reshape(*bbox_xside_outside_weights.shape)
        top[6].data[...] = bbox_xside_outside_weights
        if cfg.TRAIN.DEBUG:
            print "bbox_xside_outside_weights shape:", bbox_xside_outside_weights.shape

    def backward(self, top, propagate_down, bottom):
        """This layer does not propagate gradients."""
        pass

    def reshape(self, bottom, top):
        """Reshaping happens during the call to forward."""
        pass