예제 #1
0
def test_1d_density_kwarg(plot_1d, s):
    try:
        np.random.seed(0)
        x = np.random.normal(scale=s, size=2000)
        fig, ax = plt.subplots()

        # hist density = False:
        h = hist_plot_1d(ax, x, density=False, bins=np.linspace(-5.5, 5.5, 12))
        bar_height = h.get_children()[len(h.get_children()) // 2].get_height()
        assert (bar_height == pytest.approx(1, rel=0.1))

        # kde density = False:
        k = plot_1d(ax, x, density=False)[0]
        f = interp1d(k.get_xdata(), k.get_ydata(), 'cubic', assume_sorted=True)
        kde_height = f(0)
        assert (kde_height == pytest.approx(1, rel=0.1))

        # hist density = True:
        h = hist_plot_1d(ax, x, density=True, bins=np.linspace(-5.5, 5.5, 12))
        bar_height = h.get_children()[len(h.get_children()) // 2].get_height()
        assert (bar_height == pytest.approx(erf(0.5 / np.sqrt(2) / s),
                                            rel=0.1))

        # kde density = True:
        k = plot_1d(ax, x, density=True)[0]
        f = interp1d(k.get_xdata(), k.get_ydata(), 'cubic', assume_sorted=True)
        kde_height = f(0)
        gauss_norm = 1 / np.sqrt(2 * np.pi * s**2)
        assert (kde_height == pytest.approx(gauss_norm, rel=0.1))

        plt.close("all")

    except ImportError:
        if 'fastkde' not in sys.modules:
            pass
예제 #2
0
def test_hist_plot_1d():
    fig, ax = plt.subplots()
    numpy.random.seed(0)
    data = numpy.random.randn(1000)
    for p in ['', 'astropyhist']:
        try:
            # Check heights for histtype 'bar'
            bars = hist_plot_1d(ax, data, histtype='bar', plotter=p)
            assert(numpy.all([isinstance(b, Patch) for b in bars]))
            assert(max([b.get_height() for b in bars]) == 1.)
            assert(numpy.all(numpy.array([b.get_height() for b in bars])
                             <= 1.))

            # Check heights for histtype 'step'
            polygon, = hist_plot_1d(ax, data, histtype='step', plotter=p)
            assert(isinstance(polygon, Polygon))
            trans = polygon.get_transform() - ax.transData
            assert(numpy.isclose(trans.transform(polygon.xy)[:, -1].max(), 1.,
                                 rtol=1e-10, atol=1e-10))
            assert(numpy.all(trans.transform(polygon.xy)[:, -1] <= 1.))

            # Check heights for histtype 'stepfilled'
            polygon, = hist_plot_1d(ax, data, histtype='stepfilled', plotter=p)
            assert(isinstance(polygon, Polygon))
            trans = polygon.get_transform() - ax.transData
            assert(numpy.isclose(trans.transform(polygon.xy)[:, -1].max(), 1.,
                                 rtol=1e-10, atol=1e-10))
            assert(numpy.all(trans.transform(polygon.xy)[:, -1] <= 1.))

            # Check arguments are passed onward to underlying function
            bars = hist_plot_1d(ax, data, histtype='bar',
                                color='r', alpha=0.5, plotter=p)
            cc = ColorConverter.to_rgba('r', alpha=0.5)
            assert(numpy.all([b.get_fc() == cc for b in bars]))
            polygon, = hist_plot_1d(ax, data, histtype='step',
                                    color='r', alpha=0.5, plotter=p)
            assert(polygon.get_ec() == ColorConverter.to_rgba('r', alpha=0.5))

            # Check xmin
            xmin = -0.5
            bars = hist_plot_1d(ax, data, histtype='bar', xmin=xmin, plotter=p)
            assert((numpy.array([b.xy[0] for b in bars]) >= -0.5).all())
            polygon, = hist_plot_1d(ax, data, histtype='step', xmin=xmin)
            assert((polygon.xy[:, 0] >= -0.5).all())

            # Check xmax
            xmax = 0.5
            bars = hist_plot_1d(ax, data, histtype='bar', xmax=xmax, plotter=p)
            assert((numpy.array([b.xy[-1] for b in bars]) <= 0.5).all())
            polygon, = hist_plot_1d(ax, data, histtype='step',
                                    xmax=xmax, plotter=p)
            assert((polygon.xy[:, 0] <= 0.5).all())

            # Check xmin and xmax
            bars = hist_plot_1d(ax, data, histtype='bar',
                                xmin=xmin, xmax=xmax, plotter=p)
            assert((numpy.array([b.xy[0] for b in bars]) >= -0.5).all())
            assert((numpy.array([b.xy[-1] for b in bars]) <= 0.5).all())
            polygon, = hist_plot_1d(ax, data, histtype='step',
                                    xmin=xmin, xmax=xmax, plotter=p)
            assert((polygon.xy[:, 0] >= -0.5).all())
            assert((polygon.xy[:, 0] <= 0.5).all())
            plt.close("all")
        except ImportError:
            if p == 'astropyhist' and 'astropy' not in sys.modules:
                pass
예제 #3
0
    def plot(self, ax, paramname_x, paramname_y=None, *args, **kwargs):
        """Interface for 2D and 1D plotting routines.

        Produces a single 1D or 2D plot on an axis.

        Parameters
        ----------
        ax: matplotlib.axes.Axes
            Axes to plot on

        paramname_x: str
            Choice of parameter to plot on x-coordinate from self.columns.

        paramname_y: str
            Choice of parameter to plot on y-coordinate from self.columns.
            optional, if not provided, or the same as paramname_x, then 1D plot
            produced.

        plot_type: str
            Must be in {'kde', 'scatter', 'hist', 'fastkde'} for 2D plots and
            in {'kde', 'hist', 'fastkde', 'astropyhist'} for 1D plots.
            optional, (Default: 'kde')

        ncompress: int
            Number of samples to use in plotting routines.
            optional, Default dynamically chosen

        q: str, float, (float, float)
            Plot the `q` inner posterior quantiles in 1d 'kde' plots. To plot
            the full range, set `q=0` or `q=1`.
            * if str: any of {'1sigma', '2sigma', '3sigma', '4sigma', '5sigma'}
                Plot within mean +/- #sigma of posterior.
            * if float: Plot within the symmetric confidence interval
                `(1-q, q)`  or `(q, 1-q)`.
            * if tuple:  Plot within the (possibly asymmetric) confidence
                interval `q`.
            optional, (Default: '5sigma')

        Returns
        -------
        fig: matplotlib.figure.Figure
            New or original (if supplied) figure object

        axes: pandas.DataFrame or pandas.Series of matplotlib.axes.Axes
            Pandas array of axes objects

        """
        self._set_automatic_limits()
        plot_type = kwargs.pop('plot_type', 'kde')
        do_1d_plot = paramname_y is None or paramname_x == paramname_y
        kwargs['label'] = kwargs.get('label', self.label)
        ncompress = kwargs.pop('ncompress', None)

        if do_1d_plot:
            if paramname_x in self and plot_type is not None:
                xmin, xmax = self._limits(paramname_x)
                kwargs['xmin'] = kwargs.get('xmin', xmin)
                kwargs['xmax'] = kwargs.get('xmax', xmax)
                if plot_type == 'kde':
                    if ncompress is None:
                        ncompress = 1000
                    return kde_plot_1d(ax,
                                       self[paramname_x],
                                       weights=self.weights,
                                       ncompress=ncompress,
                                       *args,
                                       **kwargs)
                elif plot_type == 'fastkde':
                    x = self[paramname_x].compress(ncompress)
                    return fastkde_plot_1d(ax, x, *args, **kwargs)
                elif plot_type == 'hist':
                    return hist_plot_1d(ax,
                                        self[paramname_x],
                                        weights=self.weights,
                                        *args,
                                        **kwargs)
                elif plot_type == 'astropyhist':
                    x = self[paramname_x].compress(ncompress)
                    return hist_plot_1d(ax,
                                        x,
                                        plotter='astropyhist',
                                        *args,
                                        **kwargs)
                else:
                    raise NotImplementedError("plot_type is '%s', but must be"
                                              " one of {'kde', 'fastkde', "
                                              "'hist', 'astropyhist'}." %
                                              plot_type)
            else:
                ax.plot([], [])

        else:
            if (paramname_x in self and paramname_y in self
                    and plot_type is not None):
                xmin, xmax = self._limits(paramname_x)
                kwargs['xmin'] = kwargs.get('xmin', xmin)
                kwargs['xmax'] = kwargs.get('xmax', xmax)
                ymin, ymax = self._limits(paramname_y)
                kwargs['ymin'] = kwargs.get('ymin', ymin)
                kwargs['ymax'] = kwargs.get('ymax', ymax)
                if plot_type == 'kde':
                    if ncompress is None:
                        ncompress = 1000
                    x = self[paramname_x]
                    y = self[paramname_y]
                    return kde_contour_plot_2d(ax,
                                               x,
                                               y,
                                               weights=self.weights,
                                               ncompress=ncompress,
                                               *args,
                                               **kwargs)
                elif plot_type == 'fastkde':
                    x = self[paramname_x].compress(ncompress)
                    y = self[paramname_y].compress(ncompress)
                    return fastkde_contour_plot_2d(ax, x, y, *args, **kwargs)
                elif plot_type == 'scatter':
                    if ncompress is None:
                        ncompress = 500
                    x = self[paramname_x].compress(ncompress)
                    y = self[paramname_y].compress(ncompress)
                    return scatter_plot_2d(ax, x, y, *args, **kwargs)
                elif plot_type == 'hist':
                    x = self[paramname_x]
                    y = self[paramname_y]
                    return hist_plot_2d(ax,
                                        x,
                                        y,
                                        weights=self.weights,
                                        *args,
                                        **kwargs)
                else:
                    raise NotImplementedError("plot_type is '%s', but must be"
                                              "in {'kde', 'fastkde',"
                                              "'scatter', 'hist'}." %
                                              plot_type)

            else:
                ax.plot([], [])
예제 #4
0
    def plot(self, ax, paramname_x, paramname_y=None, *args, **kwargs):
        """Interface for 2D and 1D plotting routines.

        Produces a single 1D or 2D plot on an axis.

        Parameters
        ----------
        ax: matplotlib.axes.Axes
            Axes to plot on

        paramname_x: str
            Choice of parameter to plot on x-coordinate from self.columns.

        paramname_y: str
            Choice of parameter to plot on y-coordinate from self.columns.
            optional, if not provided, or the same as paramname_x, then 1D plot
            produced.

        plot_type: str
            Must be in {'kde', 'scatter', 'hist', 'fastkde'} for 2D plots and
            in {'kde', 'hist', 'fastkde', 'astropyhist'} for 1D plots.
            optional, (Default: 'kde')

        ncompress: int
            Number of samples to use in plotting routines.
            optional, Default dynamically chosen

        Returns
        -------
        fig: matplotlib.figure.Figure
            New or original (if supplied) figure object

        axes: pandas.DataFrame or pandas.Series of matplotlib.axes.Axes
            Pandas array of axes objects

        """
        plot_type = kwargs.pop('plot_type', 'kde')
        do_1d_plot = paramname_y is None or paramname_x == paramname_y
        kwargs['label'] = kwargs.get('label', self.label)
        ncompress = kwargs.pop('ncompress', None)

        if do_1d_plot:
            if paramname_x in self and plot_type is not None:
                xmin, xmax = self._limits(paramname_x)
                if plot_type == 'kde':
                    if ncompress is None:
                        ncompress = 1000
                    return kde_plot_1d(ax,
                                       self[paramname_x],
                                       weights=self.weight,
                                       ncompress=ncompress,
                                       xmin=xmin,
                                       xmax=xmax,
                                       *args,
                                       **kwargs)
                elif plot_type == 'fastkde':
                    x = self[paramname_x].compress(ncompress)
                    return fastkde_plot_1d(ax,
                                           x,
                                           xmin=xmin,
                                           xmax=xmax,
                                           *args,
                                           **kwargs)
                elif plot_type == 'hist':
                    return hist_plot_1d(ax,
                                        self[paramname_x],
                                        weights=self.weight,
                                        xmin=xmin,
                                        xmax=xmax,
                                        *args,
                                        **kwargs)
                elif plot_type == 'astropyhist':
                    x = self[paramname_x].compress(ncompress)
                    return hist_plot_1d(ax,
                                        x,
                                        plotter='astropyhist',
                                        xmin=xmin,
                                        xmax=xmax,
                                        *args,
                                        **kwargs)
                else:
                    raise NotImplementedError("plot_type is '%s', but must be"
                                              " one of {'kde', 'fastkde', "
                                              "'hist', 'astropyhist'}." %
                                              plot_type)
            else:
                ax.plot([], [])

        else:
            if (paramname_x in self and paramname_y in self
                    and plot_type is not None):
                xmin, xmax = self._limits(paramname_x)
                ymin, ymax = self._limits(paramname_y)
                if plot_type == 'kde':
                    if ncompress is None:
                        ncompress = 1000
                    x = self[paramname_x]
                    y = self[paramname_y]
                    return kde_contour_plot_2d(ax,
                                               x,
                                               y,
                                               weights=self.weight,
                                               xmin=xmin,
                                               xmax=xmax,
                                               ymin=ymin,
                                               ymax=ymax,
                                               ncompress=ncompress,
                                               *args,
                                               **kwargs)
                elif plot_type == 'fastkde':
                    x = self[paramname_x].compress(ncompress)
                    y = self[paramname_y].compress(ncompress)
                    return fastkde_contour_plot_2d(ax,
                                                   x,
                                                   y,
                                                   xmin=xmin,
                                                   xmax=xmax,
                                                   ymin=ymin,
                                                   ymax=ymax,
                                                   *args,
                                                   **kwargs)
                elif plot_type == 'scatter':
                    if ncompress is None:
                        ncompress = 500
                    x = self[paramname_x].compress(ncompress)
                    y = self[paramname_y].compress(ncompress)
                    return scatter_plot_2d(ax,
                                           x,
                                           y,
                                           xmin=xmin,
                                           xmax=xmax,
                                           ymin=ymin,
                                           ymax=ymax,
                                           *args,
                                           **kwargs)
                elif plot_type == 'hist':
                    x = self[paramname_x]
                    y = self[paramname_y]
                    return hist_plot_2d(ax,
                                        x,
                                        y,
                                        weights=self.weight,
                                        xmin=xmin,
                                        xmax=xmax,
                                        ymin=ymin,
                                        ymax=ymax,
                                        *args,
                                        **kwargs)
                else:
                    raise NotImplementedError("plot_type is '%s', but must be"
                                              "in {'kde', 'fastkde',"
                                              "'scatter', 'hist'}." %
                                              plot_type)

            else:
                ax.plot([], [])