def build_feedforward_multilayered(input_number = 2, hidden_numbers = [2], output_number = 1, hidden_function = "tanh", output_function = "logsig"): net = network() net.num_of_inputs = input_number inputs = range(input_number) biasnode = net.bias_node #Hidden layers prev_layer = inputs for hidden_number in hidden_numbers: current_layer = [] for i in xrange(int(hidden_number)): hidden = node(hidden_function) connect_node(hidden, biasnode) connect_nodes(hidden, prev_layer) net.hidden_nodes.append(hidden) current_layer.append(hidden) prev_layer = current_layer #Output nodes for i in xrange(int(output_number)): output = node(output_function) connect_node(output, biasnode) connect_nodes(output, prev_layer) net.output_nodes.append(output) return net
def crossover_node(mother, father): child = network() child.num_of_inputs = mother.num_of_inputs tr = {} for i in xrange(mother.num_of_inputs): tr[i] = i for bias in (mother.bias_node, father.bias_node): tr[bias] = child.bias_node for mother_node, father_node in zip(mother.hidden_nodes, father.hidden_nodes): child_node = node(mother_node.activation_function, 1) tr[mother_node] = child_node tr[father_node] = child_node #choose one node to pass on _choice = sample([mother_node, father_node], 1)[0] #map the weights and bias of that node to the child node for keynode, weight in _choice.weights.items(): child_node.weights[tr[keynode]] = weight child.hidden_nodes.append(child_node) for mother_node, father_node in zip(mother.output_nodes, father.output_nodes): child_node = node(mother_node.activation_function, 1) tr[mother_node] = child_node tr[father_node] = child_node #choose one node to pass on _choice = sample([mother_node, father_node], 1)[0] #map the weights and bias of that node to the child node for keynode, weight in _choice.weights.items(): child_node.weights[tr[keynode]] = weight child.output_nodes.append(child_node) return child
#glogger.debugPlot('Test Error\nMutation rate: ' + str(mutation_chance), best_error, style = 'r-', subset='best') #glogger.debugPlot('Test Error\nMutation rate: ' + str(mutation_chance), error[top_networks[0]], style = 'b-', subset='top') #Select the best 5 networks, mate them randomly and create 50 new networks population = [] for child_index in xrange(population_size): [mother, father] = sample(top_networks, 2) if random() < cross_over_chance: father = mother #Will create full mutation, no cross-over population.append(network()) population[child_index].num_of_inputs = mother.num_of_inputs bias_child = population[child_index].bias_node #Hidden layer for mother_node, father_node in zip(mother.hidden_nodes, father.hidden_nodes): hidden = node(mother_node.activation_function, random_range) weights = {} for input_number in xrange(mother.num_of_inputs): choice = sample([mother_node, father_node], 1)[0] weights[input_number] = choice.weights[input_number] choice = sample([(mother, mother_node), (father, father_node)], 1)[0] weights[bias_child] = choice[1].weights[choice[0].bias_node] _all = range(mother.num_of_inputs) _all.append(bias_child) connect_nodes(hidden, _all, weights) population[child_index].hidden_nodes.append(hidden) hidden_nodes = population[child_index].hidden_nodes #Output nodes