def __init__(self): print "ann_io constructor called" self.__data = ANN()
class ann_io: def read(self): file = open("ann.txt") data = file.read() __exec_order = False __new_layer = False __new_link = False print "ann_io: Begin parsing script" for strdat in data.split('\n'): str = strdat.split() if not str: continue if str[0] == "begin" and str[1] == "exec_order": __exec_order = True continue elif str[0] == "begin" and str[1] == "layer": self.__layer = ANN_LAYER() __new_layer = True continue elif str[0] == "begin" and str[1] == "link": self.__link = ANN_LINK() __new_link = True continue elif str[0] == "end" and str[1] == "exec_order": __exec_order = False continue elif str[0] == "end" and str[1] == "layer": self.__data.add_layer(self.__layer) __new_layer = False continue elif str[0] == "end" and str[1] == "link": self.__data.add_link(self.__link) __new_link = False continue if not __exec_order: self.__parse(str) else: print str[0] self.__parse_exec_order(str[0]) return self.__data def __init__(self): print "ann_io constructor called" self.__data = ANN() def __parse_exec_order(self,s): self.__data.add_exec_order(s) def __parse(self,s): if s[0] == "layer_name": self.__layer.set_layer_name(s[1]) elif s[0] == "layer_type": if s[1] == "input": self.__layer.set_layer_type(TYPE.INPUT) elif s[1] == "hidden": self.__layer.set_layer_type(TYPE.HIDDEN) elif s[1] == "output": self.__layer.set_layer_type(TYPE.OUTPUT) elif s[0] == "layer_size": self.__layer.set_layer_size(int(s[1])) elif s[0] == "layer_act_func": if s[1] == "sigmoid": self.__layer.set_layer_act_func(Layer.sigmoid) elif s[1] == "dsigmoid": self.__layer.set_layer_act_func(Layer.dsigmoid) elif s[0] == "link_name_pre": self.__link.set_link_name_pre(s[1]) elif s[0] == "link_name_post": self.__link.set_link_name_post(s[1]) elif s[0] == "link_conn_top": if s[1] == "full": self.__link.set_link_conn_top(TOPOLOGY.FULL) elif (s[0] == "oneone"): self.__link.set_link_conn_top(TOPOLOGY.ONEONE) elif s[0] == "triangular": self.__link.set_link_conn_top(TOPOLOGY.TRIANGULAR) elif s[0] == "stochastic": self.__link.set_link_conn_top(TOPOLOGY.STOCHASTIC) elif s[0] == "link_conn_prob": self.__link.set_link_conn_prob(float(s[1])) elif s[0] == "link_learn_rule": if s[1] == "general-hebb": self.__link.set_link_learn_rule(RULE.GENERAL) elif s[1] == "oja": self.__link.set_link_learn_rule(RULE.OJA) elif s[0] == "link_learn_param": self.__link.set_link_learn_param(float(s[1])) elif s[0] == "link_learn_rate": self.__link.set_link_learn_rate(float(s[1])) elif s[0] == "link_range": t = s[1].split(",") (min,max) = (t[0],t[1]) self.__link.set_link_range((min,max))
class ann_io: def read(self): file = open("ann.txt") data = file.read() __exec_order = False __new_layer = False __new_link = False __new_arc = False print "ann_io: Begin parsing script" for strdat in data.split('\n'): str = strdat.split() if not str: continue if str[0] == "begin" and str[1] == "exec_order": __exec_order = True continue elif str[0] == "begin" and str[1] == "layer": self.__layer = ANN_LAYER() __new_layer = True continue elif str[0] == "begin" and str[1] == "link": self.__link = ANN_LINK() __new_link = True continue elif str[0] == "begin" and str[1] == "arc": __new_arc = True self.__data.set_hard_wired(True) continue elif str[0] == "end" and str[1] == "exec_order": __exec_order = False continue elif str[0] == "end" and str[1] == "layer": self.__data.add_layer(self.__layer) __new_layer = False continue elif str[0] == "end" and str[1] == "link": self.__data.add_link(self.__link) __new_link = False continue elif str[0] == "end" and str[1] == "arc": __new_arc = False if not __exec_order: self.__parse(str) else: print str[0] self.__parse_exec_order(str[0]) return self.__data def __init__(self): print "ann_io constructor called" self.__data = ANN() def __parse_exec_order(self, s): self.__data.add_exec_order(s) def __parse(self, s): if s[0] == "layer_name": self.__layer.set_layer_name(s[1]) elif s[0] == "layer_type": if s[1] == "input": self.__layer.set_layer_type(TYPE.INPUT) elif s[1] == "hidden": self.__layer.set_layer_type(TYPE.HIDDEN) elif s[1] == "output": self.__layer.set_layer_type(TYPE.OUTPUT) elif s[0] == "layer_size": self.__layer.set_layer_size(int(s[1])) elif s[0] == "layer_act_func": if s[1] == "sigmoid": self.__layer.set_layer_act_func(Layer.sigmoid) elif s[1] == "dsigmoid": self.__layer.set_layer_act_func(Layer.dsigmoid) elif s[1] == "right_sigmoid": self.__layer.set_layer_act_func(Layer.right_sigmoid) elif s[1] == "linear": self.__layer.set_layer_act_func(Layer.linear) elif s[1] == "plinear": self.__layer.set_layer_act_func(Layer.plinear) elif s[1] == "step": self.__layer.set_layer_act_func(Layer.step) elif s[1] == "logistical": self.__layer.set_layer_act_func(Layer.logistical) elif s[0] == "link_name_pre": self.__link.set_link_name_pre(s[1]) elif s[0] == "link_name_post": self.__link.set_link_name_post(s[1]) elif s[0] == "link_conn_top": if s[1] == "full": self.__link.set_link_conn_top(TOPOLOGY.FULL) elif (s[1] == "oneone"): self.__link.set_link_conn_top(TOPOLOGY.ONEONE) elif s[1] == "triangular": self.__link.set_link_conn_top(TOPOLOGY.TRIANGULAR) elif s[1] == "stochastic": self.__link.set_link_conn_top(TOPOLOGY.STOCHASTIC) elif s[0] == "link_conn_prob": self.__link.set_link_conn_prob(float(s[1])) elif s[0] == "link_learn_rule": if s[1] == "general-hebb": self.__link.set_link_learn_rule(RULE.GENERAL) elif s[1] == "classical-hebb": self.__link.set_link_learn_rule(RULE.CLASSICAL) elif s[1] == "oja": self.__link.set_link_learn_rule(RULE.OJA) elif s[1] == "none": self.__link.set_link_learn_rule(RULE.NONE) elif s[0] == "link_learn_param": self.__link.set_link_learn_param(float(s[1])) elif s[0] == "link_learn_rate": self.__link.set_link_learn_rate(float(s[1])) elif s[0] == "link_range": t = s[1].split(",") (min, max) = (t[0], t[1]) elif s[0] == "arc": t = s[1].split(",") from_node, to_node, weight = int(t[0]), int(t[1]), float(t[2]) self.__link.add_arc(ANN_ARC(from_node, to_node, weight))