def plot(out,labels,name): # plot img_size = 15 fig, ax = plt.subplots() im, cbar = ahm.heatmap(out, labels, labels, ax=ax, cmap="gist_heat", cbarlabel='Jaccard Index') ahm.annotate_heatmap(im, valfmt="{x:.1f}", fontsize = 10) fig.tight_layout() fig = plt.gcf() fig.set_size_inches(img_size, img_size) # plt.show() fig.savefig('heatmaps/'+name+'.png', dpi=100, transparent = True)
def plot(out, labels, name): # plot img_size = 15 fig, ax = plt.subplots() im, cbar = ahm.heatmap(out, labels, labels, ax=ax, cmap="gist_heat", cbarlabel='Jaccard Index') ahm.annotate_heatmap(im, valfmt="{x:.1f}", fontsize=10) fig.tight_layout() fig = plt.gcf() fig.set_size_inches(img_size, img_size) plt.show()
def output_csv_heatmap(corpus_load_path, ngram, second_order, ignore_frequency, csv_save_path, heatmap_save_path, inds, img_size=10, font_size=20, annotate=False): # load test corpus wd, mydict = loadCorpus(corpus_load_path) # get first order matrix f = jac.get_jaccard_matrix(wd, ngram, second_order, ignore_frequency) np.fill_diagonal(f, 0) out = pd.DataFrame(f) out.columns = list(mydict.keys()) out.index = list(mydict.keys()) out.to_csv(csv_save_path, index=False) # plot first order fig, ax = plt.subplots() im, cbar = ahm.heatmap(f[:inds, :inds], list(mydict.keys())[:inds], list(mydict.keys())[:inds], ax=ax, cmap="gist_heat", cbarlabel='Jaccard Index') if annotate: ahm.annotate_heatmap(im, valfmt="{x:.2f}", fontsize=font_size) fig.tight_layout() fig = plt.gcf() fig.set_size_inches(img_size, img_size) #plt.show() fig.savefig(heatmap_save_path, dpi=100, transparent=True)
vect = np.ones(dims, 'complex128') for i in sparse.find(row)[1]: vect *= np.fft.fft(vects[i]) for i in sparse.find(row)[1]: mem_conv[i] += vect mem_conv = np.fft.irfft(mem_conv) first_conv = cosine_table_self(mem_conv) np.fill_diagonal(first_conv, 0) img_size = 15 fig, ax = plt.subplots() im, cbar = ahm.heatmap(first_conv, sorted(mydict.keys()), sorted(mydict.keys()), ax=ax, cmap="gist_heat", cbarlabel='Jaccard Index') ahm.annotate_heatmap(im, valfmt="{x:.1f}", fontsize=10) fig.tight_layout() fig = plt.gcf() fig.set_size_inches(img_size, img_size) second_conv = cosine_table_self(first_conv) np.fill_diagonal(second_conv, 0) img_size = 15 fig, ax = plt.subplots() im, cbar = ahm.heatmap(second_conv, sorted(mydict.keys()), sorted(mydict.keys()),