def get_aucs(data_list): START = time.time() FILE = 'output/{}-{}-epochs-{}-avg.csv'.format(SLURM_JOB_ID, FLAGS.iterations, NUM_TO_AVG) settings = { 'data_name': None, 'alpha': None, 'iterations': FLAGS.iterations, 'model': model } with open(FILE, 'a') as f: w = csv.writer(f) for dataname, alpha in itertools.product(data_list, alphas): settings['data_name'] = dataname settings['alpha'] = alpha for _ in range(NUM_TO_AVG): runner = AnomalyDetectionRunner(settings) exc_info = None try: r = runner.erun() r.append(T(START)) w.writerow(r) f.flush() except Exception as e: exc_info = sys.exc_info() finally: if exc_info: traceback.print_exception(*exc_info) del exc_info
flags.DEFINE_float('weight_decay', 0., 'Weight for L2 loss on embedding matrix.') flags.DEFINE_float('dropout', 0., 'Dropout rate (1 - keep probability).') flags.DEFINE_integer('features', 1, 'Whether to use features (1) or not (0).') flags.DEFINE_integer('seed', 50, 'seed for fixing the results.') flags.DEFINE_integer('iterations', 300, 'number of iterations.') flags.DEFINE_float('alpha', 0.8, 'balance parameter') ''' We did not set any seed when we conducted the experiments described in the paper; We set a seed here to steadily reveal better performance of ARGA ''' seed = 7 np.random.seed(seed) tf.set_random_seed(seed) data_list = ['twitter', 'BlogCatalog', 'Amazon'] dataname = data_list[0] model = 'gcn_ae' task = 'anomaly_detection' settings = { 'data_name': dataname, 'iterations': FLAGS.iterations, 'model': model } runner = None if task == 'anomaly_detection': runner = AnomalyDetectionRunner(settings) runner.erun()
settings = { 'data_name': dataset_str, 'iterations': FLAGS.iterations, 'model': model, 'decoder_act': decoder_act } results_dir = os.path.sep.join( ['results', dataset_str, task, model]) log_dir = os.path.sep.join([ 'logs', dataset_str, task, model, '{}_{}_{}'.format(eta, theta, alpha) ]) if not os.path.exists(results_dir): os.makedirs(results_dir) if not os.path.exists(log_dir): os.makedirs(log_dir) file2print = '{}/{}_{}_{}_{}_{}.json'.format( results_dir, dataset_str, eta, theta, alpha, embed_dim) runner = None if task == 'anomaly_detection': runner = AnomalyDetectionRunner(settings, k) writer = SummaryWriter(log_dir) runner.erun(writer)