residuals, threshold, summary=True) # Use events function to widen and number anomalous events temp_df['labeled_event'] = anomaly_utilities.anomaly_events( temp_df['labeled_anomaly'], wf=2) temp_df['detected_anomaly'] = detections['anomaly'] temp_df['all_anomalies'] = temp_df.eval('detected_anomaly or anomaly') temp_df['detected_event'] = anomaly_utilities.anomaly_events( temp_df['all_anomalies'], wf=2) # DETERMINE METRICS # ######################################### anomaly_utilities.compare_events(temp_df, 2) metrics = anomaly_utilities.metrics(temp_df) # OUTPUT RESULTS # ######################################### print('\n\n\nScript report:\n') print('Sensor: ' + sensor[0]) print('Parameters: ARIMA(%i, %i, %i)' % (p, d, q)) print('PPV = %f' % metrics.prc) print('NPV = %f' % metrics.npv) print('Acc = %f' % metrics.acc) print('TP = %i' % metrics.true_positives) print('TN = %i' % metrics.true_negatives) print('FP = %i' % metrics.false_positives) print('FN = %i' % metrics.false_negatives) print('F1 = %f' % metrics.f1) print('F2 = %f' % metrics.f2)
def ARIMA_detect(df, sensor, params, rules=False, plots=True, summary=True, output=True): """ """ print('\nProcessing ARIMA detections.') # RULES BASED DETECTION # if rules: df = rules_detect.range_check(df, params['max_range'], params['min_range']) df = rules_detect.persistence(df, params['persist']) size = rules_detect.group_size(df) df = rules_detect.interpolate(df) print(sensor + ' rules based detection complete. Longest detected group = ' + str(size)) # MODEL CREATION # [p, d, q] = params['pdq'] model_fit, residuals, predictions = modeling_utilities.build_arima_model( df['observed'], p, d, q, summary) print(sensor + ' ARIMA model complete.') # DETERMINE THRESHOLD AND DETECT ANOMALIES # threshold = anomaly_utilities.set_dynamic_threshold( residuals[0], params['window_sz'], params['alpha'], params['threshold_min']) threshold.index = residuals.index if plots: plt.figure() anomaly_utilities.plt_threshold(residuals, threshold, sensor) plt.show() print('Threshold determination complete.') detections = anomaly_utilities.detect_anomalies(df['observed'], predictions, residuals, threshold, summary=True) # WIDEN AND NUMBER ANOMALOUS EVENTS # df['labeled_event'] = anomaly_utilities.anomaly_events( df['labeled_anomaly'], params['widen']) df['detected_anomaly'] = detections['anomaly'] df['all_anomalies'] = df.eval('detected_anomaly or anomaly') df['detected_event'] = anomaly_utilities.anomaly_events( df['all_anomalies'], params['widen']) # DETERMINE METRICS # anomaly_utilities.compare_events(df, params['widen']) metrics = anomaly_utilities.metrics(df) e_metrics = anomaly_utilities.event_metrics(df) # OUTPUT RESULTS # if output: print('Model type: ARIMA') print('Sensor: ' + sensor) anomaly_utilities.print_metrics(metrics) print('Event based calculations:') anomaly_utilities.print_metrics(e_metrics) print('Model report complete\n') # GENERATE PLOTS # if plots: plt.figure() anomaly_utilities.plt_results(raw=df['raw'], predictions=detections['prediction'], labels=df['labeled_event'], detections=df['detected_event'], sensor=sensor) plt.show() ARIMA_detect = ModelWorkflow() ARIMA_detect.df = df ARIMA_detect.model_fit = model_fit ARIMA_detect.threshold = threshold ARIMA_detect.detections = detections ARIMA_detect.metrics = metrics ARIMA_detect.e_metrics = e_metrics return ARIMA_detect
def LSTM_detect_multivar(sensor_array, sensors, params, LSTM_params, model_type, name, rules=False, plots=True, summary=True, output=True, model_output=True, model_save=True): """ """ print('\nProcessing LSTM multivariate ' + str(model_type) + ' detections.') # RULES BASED DETECTION # if rules: size = dict() for snsr in sensors: sensor_array[snsr], r_c = rules_detect.range_check( sensor_array[snsr], params[snsr].max_range, params[snsr].min_range) sensor_array[snsr], p_c = rules_detect.persistence( sensor_array[snsr], params[snsr].persist) size[snsr] = rules_detect.group_size(sensor_array[snsr]) sensor_array[snsr] = rules_detect.interpolate(sensor_array[snsr]) print(snsr + ' maximum detected group length = ' + str(size[snsr])) print('Rules based detection complete.\n') # Create new data frames with raw and observed (after applying rules) and preliminary anomaly detections for selected sensors df_raw = pd.DataFrame(index=sensor_array[sensors[0]].index) df_observed = pd.DataFrame(index=sensor_array[sensors[0]].index) df_anomaly = pd.DataFrame(index=sensor_array[sensors[0]].index) for snsr in sensors: df_raw[snsr + '_raw'] = sensor_array[snsr]['raw'] df_observed[snsr + '_obs'] = sensor_array[snsr]['observed'] df_anomaly[snsr + '_anom'] = sensor_array[snsr]['anomaly'] print('Raw data shape: ' + str(df_raw.shape)) print('Observed data shape: ' + str(df_observed.shape)) print('Initial anomalies data shape: ' + str(df_anomaly.shape)) # MODEL CREATION # if model_type == 'vanilla': model = modeling_utilities.LSTM_multivar(df_observed, df_anomaly, df_raw, LSTM_params, summary, name, model_output, model_save) else: model = modeling_utilities.LSTM_multivar_bidir(df_observed, df_anomaly, df_raw, LSTM_params, summary, name, model_output, model_save) print('multivariate ' + str(model_type) + ' LSTM model complete.\n') # Plot Metrics and Evaluate the Model if plots: plt.figure() plt.plot(model.history.history['loss'], label='Training Loss') plt.plot(model.history.history['val_loss'], label='Validation Loss') plt.legend() plt.show() # DETERMINE THRESHOLD AND DETECT ANOMALIES # ts = LSTM_params['time_steps'] residuals = pd.DataFrame(model.test_residuals) residuals.columns = sensors predictions = pd.DataFrame(model.predictions) predictions.columns = sensors if model_type == 'vanilla': residuals.index = df_observed[ts:].index predictions.index = df_observed[ts:].index observed = df_observed[ts:] else: residuals.index = df_observed[ts:-ts].index predictions.index = df_observed[ts:-ts].index observed = df_observed[ts:-ts] threshold = dict() detections = dict() for snsr in sensors: threshold[snsr] = anomaly_utilities.set_dynamic_threshold( residuals[snsr], params[snsr]['window_sz'], params[snsr]['alpha'], params[snsr]['threshold_min']) threshold[snsr].index = residuals.index detections[snsr] = anomaly_utilities.detect_anomalies( observed[snsr + '_obs'], predictions[snsr], residuals[snsr], threshold[snsr], summary=True) if plots: plt.figure() anomaly_utilities.plt_threshold(residuals[snsr], threshold[snsr], sensors[snsr]) plt.show() print('Threshold determination complete.') # WIDEN AND NUMBER ANOMALOUS EVENTS # all_data = dict() for snsr in sensors: if model_type == 'vanilla': all_data[snsr] = sensor_array[snsr].iloc[ts:] else: all_data[snsr] = sensor_array[snsr].iloc[ts:-ts] all_data[snsr]['labeled_event'] = anomaly_utilities.anomaly_events( all_data[snsr]['labeled_anomaly'], params[snsr]['widen']) all_data[snsr]['detected_anomaly'] = detections[snsr]['anomaly'] all_data[snsr]['all_anomalies'] = all_data[snsr].eval( 'detected_anomaly or anomaly') all_data[snsr]['detected_event'] = anomaly_utilities.anomaly_events( all_data[snsr]['all_anomalies'], params[snsr]['widen']) # DETERMINE METRICS # metrics = dict() e_metrics = dict() for snsr in sensors: anomaly_utilities.compare_events(all_data[snsr], params[snsr]['widen']) metrics[snsr] = anomaly_utilities.metrics(all_data[snsr]) e_metrics[snsr] = anomaly_utilities.event_metrics(all_data[snsr]) # OUTPUT RESULTS # if output: for snsr in sensors: print('\nModel type: LSTM multivariate ' + str(model_type)) print('Sensor: ' + snsr) anomaly_utilities.print_metrics(metrics[snsr]) print('Event based calculations:') anomaly_utilities.print_metrics(e_metrics[snsr]) print('Model report complete\n') # GENERATE PLOTS # if plots: for snsr in sensors: plt.figure() anomaly_utilities.plt_results( raw=sensor_array[snsr]['raw'], predictions=detections[snsr]['prediction'], labels=sensor_array[snsr]['labeled_event'], detections=all_data[snsr]['detected_event'], sensor=snsr) plt.show() LSTM_detect_multivar = ModelWorkflow() LSTM_detect_multivar.sensor_array = sensor_array LSTM_detect_multivar.df_observed = df_observed LSTM_detect_multivar.df_raw = df_raw LSTM_detect_multivar.df_anomaly = df_anomaly LSTM_detect_multivar.model = model LSTM_detect_multivar.threshold = threshold LSTM_detect_multivar.detections = detections LSTM_detect_multivar.all_data = all_data LSTM_detect_multivar.metrics = metrics LSTM_detect_multivar.e_metrics = e_metrics return LSTM_detect_multivar
def LSTM_detect_univar(df, sensor, params, LSTM_params, model_type, name, rules=False, plots=True, summary=True, output=True, model_output=True, model_save=True): """ """ print('\nProcessing LSTM univariate ' + str(model_type) + ' detections.') # RULES BASED DETECTION # if rules: df = rules_detect.range_check(df, params['max_range'], params['min_range']) df = rules_detect.persistence(df, params['persist']) size = rules_detect.group_size(df) df = rules_detect.interpolate(df) print( sensor + ' rules based detection complete. Maximum detected group length = ' + str(size)) # MODEL CREATION # if model_type == 'vanilla': model = modeling_utilities.LSTM_univar(df, LSTM_params, summary, name, model_output, model_save) else: model = modeling_utilities.LSTM_univar_bidir(df, LSTM_params, summary, name, model_output, model_save) print(sensor + ' ' + str(model_type) + ' LSTM model complete.') if plots: plt.figure() plt.plot(model.history.history['loss'], label='Training Loss') plt.plot(model.history.history['val_loss'], label='Validation Loss') plt.legend() plt.show() # DETERMINE THRESHOLD AND DETECT ANOMALIES # ts = LSTM_params['time_steps'] threshold = anomaly_utilities.set_dynamic_threshold( model.test_residuals[0], params['window_sz'], params['alpha'], params['threshold_min']) if model_type == 'vanilla': threshold.index = df[ts:].index else: threshold.index = df[ts:-ts].index residuals = pd.DataFrame(model.test_residuals) residuals.index = threshold.index if plots: plt.figure() anomaly_utilities.plt_threshold(residuals, threshold, sensor) plt.show() if model_type == 'vanilla': observed = df[['observed']][ts:] else: observed = df[['observed']][ts:-ts] print('Threshold determination complete.') detections = anomaly_utilities.detect_anomalies(observed, model.predictions, model.test_residuals, threshold, summary=True) # WIDEN AND NUMBER ANOMALOUS EVENTS # if model_type == 'vanilla': df_anomalies = df.iloc[ts:] else: df_anomalies = df.iloc[ts:-ts] df_anomalies['labeled_event'] = anomaly_utilities.anomaly_events( df_anomalies['labeled_anomaly'], params['widen']) df_anomalies['detected_anomaly'] = detections['anomaly'] df_anomalies['all_anomalies'] = df_anomalies.eval( 'detected_anomaly or anomaly') df_anomalies['detected_event'] = anomaly_utilities.anomaly_events( df_anomalies['all_anomalies'], params['widen']) # DETERMINE METRICS # anomaly_utilities.compare_events(df_anomalies, params['widen']) metrics = anomaly_utilities.metrics(df_anomalies) e_metrics = anomaly_utilities.event_metrics(df_anomalies) # OUTPUT RESULTS # if output: print('Model type: LSTM univariate ' + str(model_type)) print('Sensor: ' + sensor) anomaly_utilities.print_metrics(metrics) print('Event based calculations:') anomaly_utilities.print_metrics(e_metrics) print('Model report complete\n') # GENERATE PLOTS # if plots: plt.figure() anomaly_utilities.plt_results( raw=df['raw'], predictions=detections['prediction'], labels=df['labeled_event'], detections=df_anomalies['detected_event'], sensor=sensor) plt.show() LSTM_detect_univar = ModelWorkflow() LSTM_detect_univar.df = df LSTM_detect_univar.model = model LSTM_detect_univar.threshold = threshold LSTM_detect_univar.detections = detections LSTM_detect_univar.df_anomalies = df_anomalies LSTM_detect_univar.metrics = metrics LSTM_detect_univar.e_metrics = e_metrics return LSTM_detect_univar
summary=True) # Use events function to widen and number anomalous events df_anomalies = df.iloc[time_steps:] df_anomalies['labeled_event'] = anomaly_utilities.anomaly_events( df_anomalies['labeled_anomaly']) df_anomalies['detected_anomaly'] = detections['anomaly'] df_anomalies['all_anomalies'] = df_anomalies.eval( 'detected_anomaly or anomaly') df_anomalies['detected_event'] = anomaly_utilities.anomaly_events( df_anomalies['all_anomalies']) # DETERMINE METRICS # ######################################### anomaly_utilities.compare_events(df_anomalies, 0) metrics = anomaly_utilities.metrics(df_anomalies) # OUTPUT RESULTS # ######################################### print('\n\n\nScript report:\n') print('Sensor: ' + sensor[0]) print('Year: ' + str(year)) # print('Parameters: LSTM, sequence length: %i, training samples: %i, Threshold = %f' %(time_steps, samples, threshold)) anomaly_utilities.print_metrics(metrics) print("\n LSTM script end.") # GENERATE PLOTS # ######################################### plt.figure() plt.plot(df['raw'], 'b', label='original data') plt.plot(detections['prediction'], 'c', label='predicted values')
# size.append(s) sensor_array[sensor[i]] = rules_detect.add_labels( sensor_array[sensor[i]], -9999) sensor_array[sensor[i]] = rules_detect.interpolate( sensor_array[sensor[i]]) # print(str(sensor[i]) + ' longest detected group = ' + str(size[i])) # metrics for rules based detection # df_rules_metrics = sensor_array[sensor[i]] df_rules_metrics['labeled_event'] = anomaly_utilities.anomaly_events( df_rules_metrics['labeled_anomaly'], wf=0) df_rules_metrics['detected_event'] = anomaly_utilities.anomaly_events( df_rules_metrics['anomaly'], wf=0) anomaly_utilities.compare_events(df_rules_metrics, wf=0) rules_metrics_object = anomaly_utilities.metrics(df_rules_metrics) print('\nRules based metrics') print('Sensor: ' + sensor[i]) anomaly_utilities.print_metrics(rules_metrics_object) methods_output.rules_metrics.append(rules_metrics_object) print('Rules based detection complete.\n') del persist_count del range_count ############################################## # MODEL AND ANOMALY DETECTION IMPLEMENTATION # ############################################## # ARIMA BASED DETECTION # # #########################################
# Use events function to widen and number anomalous events df_array = [] for i in range(0, len(detections_array)): all_data = [] all_data = sensor_array[sensor[i]].iloc[time_steps:] all_data['labeled_event'] = anomaly_utilities.anomaly_events( all_data['labeled_anomaly']) all_data['detected_anomaly'] = detections_array[i]['anomaly'] all_data['detected_event'] = anomaly_utilities.anomaly_events( all_data['detected_anomaly']) df_array.append(all_data) # DETERMINE METRICS # ######################################### anomaly_utilities.compare_events(df_array[0]) temp_metrics = anomaly_utilities.metrics(df_array[0]) anomaly_utilities.compare_events(df_array[1]) cond_metrics = anomaly_utilities.metrics(df_array[1]) anomaly_utilities.compare_events(df_array[2]) ph_metrics = anomaly_utilities.metrics(df_array[2]) anomaly_utilities.compare_events(df_array[3]) do_metrics = anomaly_utilities.metrics(df_array[3]) # OUTPUT RESULTS # ######################################### print('\n\n\nScript report:\n') print('Sensor: temp') print('Year: ' + str(year))
sensor_array[snsr], persist_count[snsr] = \ rules_detect.persistence(sensor_array[snsr], site_params[site][snsr]['persist'], output_grp=True) sensor_array[snsr] = rules_detect.add_labels(sensor_array[snsr], -9999) sensor_array[snsr] = rules_detect.interpolate(sensor_array[snsr]) # s = rules_detect.group_size(sensor_array[snsr]) # size.append(s) # print(str(snsr) + ' longest detected group = ' + str(size)) # metrics for rules based detection # df_rules_metrics = sensor_array[snsr] df_rules_metrics['labeled_event'] = anomaly_utilities.anomaly_events( df_rules_metrics['labeled_anomaly'], wf=0) df_rules_metrics['detected_event'] = anomaly_utilities.anomaly_events( df_rules_metrics['anomaly'], wf=0) anomaly_utilities.compare_events(df_rules_metrics, wf=0) rules_metrics[snsr] = anomaly_utilities.metrics(df_rules_metrics) print('\nRules based metrics') print('Sensor: ' + snsr) anomaly_utilities.print_metrics(rules_metrics[snsr]) del (df_rules_metrics) print('Rules based detection complete.\n') #### Detect Calibration Events ######################################### calib_sensors = sensors[1:4] input_array = dict() for snsr in calib_sensors: input_array[snsr] = sensor_array[snsr] all_calib, all_calib_dates, df_all_calib, calib_dates_overlap = \