예제 #1
0
                                                residuals,
                                                threshold,
                                                summary=True)

# Use events function to widen and number anomalous events
temp_df['labeled_event'] = anomaly_utilities.anomaly_events(
    temp_df['labeled_anomaly'], wf=2)
temp_df['detected_anomaly'] = detections['anomaly']
temp_df['all_anomalies'] = temp_df.eval('detected_anomaly or anomaly')
temp_df['detected_event'] = anomaly_utilities.anomaly_events(
    temp_df['all_anomalies'], wf=2)

# DETERMINE METRICS #
#########################################
anomaly_utilities.compare_events(temp_df, 2)
metrics = anomaly_utilities.metrics(temp_df)

# OUTPUT RESULTS #
#########################################
print('\n\n\nScript report:\n')
print('Sensor: ' + sensor[0])
print('Parameters: ARIMA(%i, %i, %i)' % (p, d, q))
print('PPV = %f' % metrics.prc)
print('NPV = %f' % metrics.npv)
print('Acc = %f' % metrics.acc)
print('TP  = %i' % metrics.true_positives)
print('TN  = %i' % metrics.true_negatives)
print('FP  = %i' % metrics.false_positives)
print('FN  = %i' % metrics.false_negatives)
print('F1 = %f' % metrics.f1)
print('F2 = %f' % metrics.f2)
예제 #2
0
def ARIMA_detect(df,
                 sensor,
                 params,
                 rules=False,
                 plots=True,
                 summary=True,
                 output=True):
    """
    """
    print('\nProcessing ARIMA detections.')
    # RULES BASED DETECTION #
    if rules:
        df = rules_detect.range_check(df, params['max_range'],
                                      params['min_range'])
        df = rules_detect.persistence(df, params['persist'])
        size = rules_detect.group_size(df)
        df = rules_detect.interpolate(df)
        print(sensor +
              ' rules based detection complete. Longest detected group = ' +
              str(size))

    # MODEL CREATION #
    [p, d, q] = params['pdq']
    model_fit, residuals, predictions = modeling_utilities.build_arima_model(
        df['observed'], p, d, q, summary)
    print(sensor + ' ARIMA model complete.')

    # DETERMINE THRESHOLD AND DETECT ANOMALIES #
    threshold = anomaly_utilities.set_dynamic_threshold(
        residuals[0], params['window_sz'], params['alpha'],
        params['threshold_min'])
    threshold.index = residuals.index
    if plots:
        plt.figure()
        anomaly_utilities.plt_threshold(residuals, threshold, sensor)
        plt.show()
    print('Threshold determination complete.')
    detections = anomaly_utilities.detect_anomalies(df['observed'],
                                                    predictions,
                                                    residuals,
                                                    threshold,
                                                    summary=True)

    # WIDEN AND NUMBER ANOMALOUS EVENTS #
    df['labeled_event'] = anomaly_utilities.anomaly_events(
        df['labeled_anomaly'], params['widen'])
    df['detected_anomaly'] = detections['anomaly']
    df['all_anomalies'] = df.eval('detected_anomaly or anomaly')
    df['detected_event'] = anomaly_utilities.anomaly_events(
        df['all_anomalies'], params['widen'])

    # DETERMINE METRICS #
    anomaly_utilities.compare_events(df, params['widen'])
    metrics = anomaly_utilities.metrics(df)
    e_metrics = anomaly_utilities.event_metrics(df)

    # OUTPUT RESULTS #
    if output:
        print('Model type: ARIMA')
        print('Sensor: ' + sensor)
        anomaly_utilities.print_metrics(metrics)
        print('Event based calculations:')
        anomaly_utilities.print_metrics(e_metrics)
        print('Model report complete\n')

    # GENERATE PLOTS #
    if plots:
        plt.figure()
        anomaly_utilities.plt_results(raw=df['raw'],
                                      predictions=detections['prediction'],
                                      labels=df['labeled_event'],
                                      detections=df['detected_event'],
                                      sensor=sensor)
        plt.show()

    ARIMA_detect = ModelWorkflow()
    ARIMA_detect.df = df
    ARIMA_detect.model_fit = model_fit
    ARIMA_detect.threshold = threshold
    ARIMA_detect.detections = detections
    ARIMA_detect.metrics = metrics
    ARIMA_detect.e_metrics = e_metrics

    return ARIMA_detect
예제 #3
0
def LSTM_detect_multivar(sensor_array,
                         sensors,
                         params,
                         LSTM_params,
                         model_type,
                         name,
                         rules=False,
                         plots=True,
                         summary=True,
                         output=True,
                         model_output=True,
                         model_save=True):
    """
    """
    print('\nProcessing LSTM multivariate ' + str(model_type) + ' detections.')
    # RULES BASED DETECTION #
    if rules:
        size = dict()
        for snsr in sensors:
            sensor_array[snsr], r_c = rules_detect.range_check(
                sensor_array[snsr], params[snsr].max_range,
                params[snsr].min_range)
            sensor_array[snsr], p_c = rules_detect.persistence(
                sensor_array[snsr], params[snsr].persist)
            size[snsr] = rules_detect.group_size(sensor_array[snsr])
            sensor_array[snsr] = rules_detect.interpolate(sensor_array[snsr])
            print(snsr + ' maximum detected group length = ' + str(size[snsr]))
        print('Rules based detection complete.\n')
    # Create new data frames with raw and observed (after applying rules) and preliminary anomaly detections for selected sensors
    df_raw = pd.DataFrame(index=sensor_array[sensors[0]].index)
    df_observed = pd.DataFrame(index=sensor_array[sensors[0]].index)
    df_anomaly = pd.DataFrame(index=sensor_array[sensors[0]].index)
    for snsr in sensors:
        df_raw[snsr + '_raw'] = sensor_array[snsr]['raw']
        df_observed[snsr + '_obs'] = sensor_array[snsr]['observed']
        df_anomaly[snsr + '_anom'] = sensor_array[snsr]['anomaly']
    print('Raw data shape: ' + str(df_raw.shape))
    print('Observed data shape: ' + str(df_observed.shape))
    print('Initial anomalies data shape: ' + str(df_anomaly.shape))

    # MODEL CREATION #
    if model_type == 'vanilla':
        model = modeling_utilities.LSTM_multivar(df_observed, df_anomaly,
                                                 df_raw, LSTM_params, summary,
                                                 name, model_output,
                                                 model_save)
    else:
        model = modeling_utilities.LSTM_multivar_bidir(df_observed, df_anomaly,
                                                       df_raw, LSTM_params,
                                                       summary, name,
                                                       model_output,
                                                       model_save)

    print('multivariate ' + str(model_type) + ' LSTM model complete.\n')
    # Plot Metrics and Evaluate the Model
    if plots:
        plt.figure()
        plt.plot(model.history.history['loss'], label='Training Loss')
        plt.plot(model.history.history['val_loss'], label='Validation Loss')
        plt.legend()
        plt.show()

    # DETERMINE THRESHOLD AND DETECT ANOMALIES #
    ts = LSTM_params['time_steps']
    residuals = pd.DataFrame(model.test_residuals)
    residuals.columns = sensors
    predictions = pd.DataFrame(model.predictions)
    predictions.columns = sensors
    if model_type == 'vanilla':
        residuals.index = df_observed[ts:].index
        predictions.index = df_observed[ts:].index
        observed = df_observed[ts:]
    else:
        residuals.index = df_observed[ts:-ts].index
        predictions.index = df_observed[ts:-ts].index
        observed = df_observed[ts:-ts]

    threshold = dict()
    detections = dict()
    for snsr in sensors:
        threshold[snsr] = anomaly_utilities.set_dynamic_threshold(
            residuals[snsr], params[snsr]['window_sz'], params[snsr]['alpha'],
            params[snsr]['threshold_min'])
        threshold[snsr].index = residuals.index
        detections[snsr] = anomaly_utilities.detect_anomalies(
            observed[snsr + '_obs'],
            predictions[snsr],
            residuals[snsr],
            threshold[snsr],
            summary=True)
        if plots:
            plt.figure()
            anomaly_utilities.plt_threshold(residuals[snsr], threshold[snsr],
                                            sensors[snsr])
            plt.show()
    print('Threshold determination complete.')

    # WIDEN AND NUMBER ANOMALOUS EVENTS #
    all_data = dict()
    for snsr in sensors:
        if model_type == 'vanilla':
            all_data[snsr] = sensor_array[snsr].iloc[ts:]
        else:
            all_data[snsr] = sensor_array[snsr].iloc[ts:-ts]
        all_data[snsr]['labeled_event'] = anomaly_utilities.anomaly_events(
            all_data[snsr]['labeled_anomaly'], params[snsr]['widen'])
        all_data[snsr]['detected_anomaly'] = detections[snsr]['anomaly']
        all_data[snsr]['all_anomalies'] = all_data[snsr].eval(
            'detected_anomaly or anomaly')
        all_data[snsr]['detected_event'] = anomaly_utilities.anomaly_events(
            all_data[snsr]['all_anomalies'], params[snsr]['widen'])

    # DETERMINE METRICS #
    metrics = dict()
    e_metrics = dict()
    for snsr in sensors:
        anomaly_utilities.compare_events(all_data[snsr], params[snsr]['widen'])
        metrics[snsr] = anomaly_utilities.metrics(all_data[snsr])
        e_metrics[snsr] = anomaly_utilities.event_metrics(all_data[snsr])

    # OUTPUT RESULTS #
    if output:
        for snsr in sensors:
            print('\nModel type: LSTM multivariate ' + str(model_type))
            print('Sensor: ' + snsr)
            anomaly_utilities.print_metrics(metrics[snsr])
            print('Event based calculations:')
            anomaly_utilities.print_metrics(e_metrics[snsr])
        print('Model report complete\n')

    # GENERATE PLOTS #
    if plots:
        for snsr in sensors:
            plt.figure()
            anomaly_utilities.plt_results(
                raw=sensor_array[snsr]['raw'],
                predictions=detections[snsr]['prediction'],
                labels=sensor_array[snsr]['labeled_event'],
                detections=all_data[snsr]['detected_event'],
                sensor=snsr)
            plt.show()

    LSTM_detect_multivar = ModelWorkflow()
    LSTM_detect_multivar.sensor_array = sensor_array
    LSTM_detect_multivar.df_observed = df_observed
    LSTM_detect_multivar.df_raw = df_raw
    LSTM_detect_multivar.df_anomaly = df_anomaly
    LSTM_detect_multivar.model = model
    LSTM_detect_multivar.threshold = threshold
    LSTM_detect_multivar.detections = detections
    LSTM_detect_multivar.all_data = all_data
    LSTM_detect_multivar.metrics = metrics
    LSTM_detect_multivar.e_metrics = e_metrics

    return LSTM_detect_multivar
예제 #4
0
def LSTM_detect_univar(df,
                       sensor,
                       params,
                       LSTM_params,
                       model_type,
                       name,
                       rules=False,
                       plots=True,
                       summary=True,
                       output=True,
                       model_output=True,
                       model_save=True):
    """
    """
    print('\nProcessing LSTM univariate ' + str(model_type) + ' detections.')
    # RULES BASED DETECTION #
    if rules:
        df = rules_detect.range_check(df, params['max_range'],
                                      params['min_range'])
        df = rules_detect.persistence(df, params['persist'])
        size = rules_detect.group_size(df)
        df = rules_detect.interpolate(df)
        print(
            sensor +
            ' rules based detection complete. Maximum detected group length = '
            + str(size))

    # MODEL CREATION #
    if model_type == 'vanilla':
        model = modeling_utilities.LSTM_univar(df, LSTM_params, summary, name,
                                               model_output, model_save)
    else:
        model = modeling_utilities.LSTM_univar_bidir(df, LSTM_params, summary,
                                                     name, model_output,
                                                     model_save)
    print(sensor + ' ' + str(model_type) + ' LSTM model complete.')
    if plots:
        plt.figure()
        plt.plot(model.history.history['loss'], label='Training Loss')
        plt.plot(model.history.history['val_loss'], label='Validation Loss')
        plt.legend()
        plt.show()

    # DETERMINE THRESHOLD AND DETECT ANOMALIES #
    ts = LSTM_params['time_steps']
    threshold = anomaly_utilities.set_dynamic_threshold(
        model.test_residuals[0], params['window_sz'], params['alpha'],
        params['threshold_min'])
    if model_type == 'vanilla':
        threshold.index = df[ts:].index
    else:
        threshold.index = df[ts:-ts].index
    residuals = pd.DataFrame(model.test_residuals)
    residuals.index = threshold.index
    if plots:
        plt.figure()
        anomaly_utilities.plt_threshold(residuals, threshold, sensor)
        plt.show()
    if model_type == 'vanilla':
        observed = df[['observed']][ts:]
    else:
        observed = df[['observed']][ts:-ts]
    print('Threshold determination complete.')
    detections = anomaly_utilities.detect_anomalies(observed,
                                                    model.predictions,
                                                    model.test_residuals,
                                                    threshold,
                                                    summary=True)

    # WIDEN AND NUMBER ANOMALOUS EVENTS #
    if model_type == 'vanilla':
        df_anomalies = df.iloc[ts:]
    else:
        df_anomalies = df.iloc[ts:-ts]
    df_anomalies['labeled_event'] = anomaly_utilities.anomaly_events(
        df_anomalies['labeled_anomaly'], params['widen'])
    df_anomalies['detected_anomaly'] = detections['anomaly']
    df_anomalies['all_anomalies'] = df_anomalies.eval(
        'detected_anomaly or anomaly')
    df_anomalies['detected_event'] = anomaly_utilities.anomaly_events(
        df_anomalies['all_anomalies'], params['widen'])

    # DETERMINE METRICS #
    anomaly_utilities.compare_events(df_anomalies, params['widen'])
    metrics = anomaly_utilities.metrics(df_anomalies)
    e_metrics = anomaly_utilities.event_metrics(df_anomalies)

    # OUTPUT RESULTS #
    if output:
        print('Model type: LSTM univariate ' + str(model_type))
        print('Sensor: ' + sensor)
        anomaly_utilities.print_metrics(metrics)
        print('Event based calculations:')
        anomaly_utilities.print_metrics(e_metrics)
        print('Model report complete\n')

    # GENERATE PLOTS #
    if plots:
        plt.figure()
        anomaly_utilities.plt_results(
            raw=df['raw'],
            predictions=detections['prediction'],
            labels=df['labeled_event'],
            detections=df_anomalies['detected_event'],
            sensor=sensor)
        plt.show()

    LSTM_detect_univar = ModelWorkflow()
    LSTM_detect_univar.df = df
    LSTM_detect_univar.model = model
    LSTM_detect_univar.threshold = threshold
    LSTM_detect_univar.detections = detections
    LSTM_detect_univar.df_anomalies = df_anomalies
    LSTM_detect_univar.metrics = metrics
    LSTM_detect_univar.e_metrics = e_metrics

    return LSTM_detect_univar
예제 #5
0
                                                summary=True)

# Use events function to widen and number anomalous events
df_anomalies = df.iloc[time_steps:]
df_anomalies['labeled_event'] = anomaly_utilities.anomaly_events(
    df_anomalies['labeled_anomaly'])
df_anomalies['detected_anomaly'] = detections['anomaly']
df_anomalies['all_anomalies'] = df_anomalies.eval(
    'detected_anomaly or anomaly')
df_anomalies['detected_event'] = anomaly_utilities.anomaly_events(
    df_anomalies['all_anomalies'])

# DETERMINE METRICS #
#########################################
anomaly_utilities.compare_events(df_anomalies, 0)
metrics = anomaly_utilities.metrics(df_anomalies)

# OUTPUT RESULTS #
#########################################
print('\n\n\nScript report:\n')
print('Sensor: ' + sensor[0])
print('Year: ' + str(year))
# print('Parameters: LSTM, sequence length: %i, training samples: %i, Threshold = %f' %(time_steps, samples, threshold))
anomaly_utilities.print_metrics(metrics)
print("\n LSTM script end.")

# GENERATE PLOTS #
#########################################
plt.figure()
plt.plot(df['raw'], 'b', label='original data')
plt.plot(detections['prediction'], 'c', label='predicted values')
예제 #6
0
        # size.append(s)
        sensor_array[sensor[i]] = rules_detect.add_labels(
            sensor_array[sensor[i]], -9999)
        sensor_array[sensor[i]] = rules_detect.interpolate(
            sensor_array[sensor[i]])
        # print(str(sensor[i]) + ' longest detected group = ' + str(size[i]))

        # metrics for rules based detection #
        df_rules_metrics = sensor_array[sensor[i]]
        df_rules_metrics['labeled_event'] = anomaly_utilities.anomaly_events(
            df_rules_metrics['labeled_anomaly'], wf=0)
        df_rules_metrics['detected_event'] = anomaly_utilities.anomaly_events(
            df_rules_metrics['anomaly'], wf=0)
        anomaly_utilities.compare_events(df_rules_metrics, wf=0)

        rules_metrics_object = anomaly_utilities.metrics(df_rules_metrics)
        print('\nRules based metrics')
        print('Sensor: ' + sensor[i])
        anomaly_utilities.print_metrics(rules_metrics_object)
        methods_output.rules_metrics.append(rules_metrics_object)

    print('Rules based detection complete.\n')
    del persist_count
    del range_count

    ##############################################
    # MODEL AND ANOMALY DETECTION IMPLEMENTATION #
    ##############################################

    # ARIMA BASED DETECTION #
    # #########################################
# Use events function to widen and number anomalous events
df_array = []
for i in range(0, len(detections_array)):
    all_data = []
    all_data = sensor_array[sensor[i]].iloc[time_steps:]
    all_data['labeled_event'] = anomaly_utilities.anomaly_events(
        all_data['labeled_anomaly'])
    all_data['detected_anomaly'] = detections_array[i]['anomaly']
    all_data['detected_event'] = anomaly_utilities.anomaly_events(
        all_data['detected_anomaly'])
    df_array.append(all_data)

# DETERMINE METRICS #
#########################################
anomaly_utilities.compare_events(df_array[0])
temp_metrics = anomaly_utilities.metrics(df_array[0])

anomaly_utilities.compare_events(df_array[1])
cond_metrics = anomaly_utilities.metrics(df_array[1])

anomaly_utilities.compare_events(df_array[2])
ph_metrics = anomaly_utilities.metrics(df_array[2])

anomaly_utilities.compare_events(df_array[3])
do_metrics = anomaly_utilities.metrics(df_array[3])

# OUTPUT RESULTS #
#########################################
print('\n\n\nScript report:\n')
print('Sensor: temp')
print('Year: ' + str(year))
예제 #8
0
    sensor_array[snsr], persist_count[snsr] = \
        rules_detect.persistence(sensor_array[snsr], site_params[site][snsr]['persist'], output_grp=True)
    sensor_array[snsr] = rules_detect.add_labels(sensor_array[snsr], -9999)
    sensor_array[snsr] = rules_detect.interpolate(sensor_array[snsr])
    # s = rules_detect.group_size(sensor_array[snsr])
    # size.append(s)
    # print(str(snsr) + ' longest detected group = ' + str(size))

    # metrics for rules based detection #
    df_rules_metrics = sensor_array[snsr]
    df_rules_metrics['labeled_event'] = anomaly_utilities.anomaly_events(
        df_rules_metrics['labeled_anomaly'], wf=0)
    df_rules_metrics['detected_event'] = anomaly_utilities.anomaly_events(
        df_rules_metrics['anomaly'], wf=0)
    anomaly_utilities.compare_events(df_rules_metrics, wf=0)
    rules_metrics[snsr] = anomaly_utilities.metrics(df_rules_metrics)
    print('\nRules based metrics')
    print('Sensor: ' + snsr)
    anomaly_utilities.print_metrics(rules_metrics[snsr])
    del (df_rules_metrics)

print('Rules based detection complete.\n')

#### Detect Calibration Events
#########################################

calib_sensors = sensors[1:4]
input_array = dict()
for snsr in calib_sensors:
    input_array[snsr] = sensor_array[snsr]
all_calib, all_calib_dates, df_all_calib, calib_dates_overlap = \