예제 #1
0
        num_qubits, list(pauli_decomp.values()), list(pauli_decomp.keys()))

#print('Beta values are ' + str(hamiltonian.return_betas()))

ansatz = acp.initial_ansatz(num_qubits)
ansatzlist = []
ansatzlist.append(ansatz)
betamatrixlist = []
#Run IQAE
for k in range(1, uptowhatK + 1):
    print('##########################################')
    print('K = ' + str(k))
    #Generate Ansatz for this round
    ansatz = acp.gen_next_ansatz(ansatz,
                                 hamiltonian,
                                 num_qubits,
                                 method='random_selection_new',
                                 num_new_to_add=numberofnewstatestoadd)
    ansatzlist.append(ansatz)

    E_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, hamiltonian, "E")
    D_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, hamiltonian, "D")

    if optimizer == 'feasibility_sdp':
        R_mats_uneval = []
        F_mats_uneval = []
        for thisL in L_terms:
            R_mats_uneval.append(
                mcp.unevaluatedmatrix(num_qubits, ansatz, thisL, "D"))
            thisLdagL = hcp.multiply_hamiltonians(
                hcp.dagger_hamiltonian(thisL), thisL)
예제 #2
0
L = np.array([[-0.1,-0.25j,0.25j,0],[-0.25j,-0.05-0.1j,0,0.25j],[0.25j,0,-0.05+0.1j,-0.25j],[0.1,0.25j,-0.25j,0]])

#Converting L^dag L into Hamiltonian
LdagL = np.array([[0.145,0.025+0.0375j,0.025-0.0375j,-0.125],[0.025-0.0375j,0.1375,-0.125,-0.025-0.0125j],[0.025+0.0375j,-0.125,0.1375,-0.025+0.0125j],[-0.125,-0.025+0.0125j,-0.025-0.0125j,0.125]])
pauli_decomp = pcp.paulinomial_decomposition(L) 
hamiltonian = hcp.generate_arbitary_hamiltonian(num_qubits, list(pauli_decomp.values()), list(pauli_decomp.keys()))

#print('Beta values are ' + str(hamiltonian.return_betas()))

ansatz = acp.initial_ansatz(num_qubits)

#Run IQAE
for k in range(1, uptowhatK + 1):
    print(k)
    #Generate Ansatz for this round
    ansatz = acp.gen_next_ansatz(ansatz, hamiltonian, num_qubits)

    E_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, hamiltonian, "E")
    D_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, hamiltonian, "D")

    #Here is where we should be able to specify how to evaluate the matrices. However only the exact method (classical matrix multiplication) has been implemented so far
    E_mat_evaluated = E_mat_uneval.evaluate_matrix_by_matrix_multiplicaton(initial_state)
    D_mat_evaluated = D_mat_uneval.evaluate_matrix_by_matrix_multiplicaton(initial_state)

    ##########################################
    #Start of the classical post-processing. #
    ##########################################
    IQAE_instance = pp.IQAE_Lindblad(num_qubits, D_mat_evaluated, E_mat_evaluated)
    IQAE_instance.define_optimizer(optimizer, eigh_invcond=eigh_inv_cond,eig_invcond=eig_inv_cond,degeneracy_tol=degeneracy_tol)

    IQAE_instance.evaluate()
def generate_IQAE_results(num_qubits, listofrandomhamiltonians,
                          noise_term_function):
    finalresults = []
    for hamiltonian in listofrandomhamiltonians:
        gammas, L_terms = noise_term_function(num_qubits)
        for k in range(1, uptowhatK + 1):
            print('##########################################')
            print('K = ' + str(k))
            # max_k_val = k
            #Generate Ansatz for this round
            if random_selection_new:
                ansatz = acp.gen_next_ansatz(
                    ansatz,
                    hamiltonian,
                    num_qubits,
                    method='random_selection_new',
                    num_new_to_add=numberofnewstatestoadd)
            else:
                ansatz = acp.gen_next_ansatz(ansatz, hamiltonian, num_qubits)
            E_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz,
                                                 hamiltonian, "E")
            D_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz,
                                                 hamiltonian, "D")

            if optimizer == 'feasibility_sdp':
                R_mats_uneval = []
                F_mats_uneval = []
                for thisL in L_terms:
                    R_mats_uneval.append(
                        mcp.unevaluatedmatrix(num_qubits, ansatz, thisL, "D"))
                    thisLdagL = hcp.multiply_hamiltonians(
                        hcp.dagger_hamiltonian(thisL), thisL)
                    F_mats_uneval.append(
                        mcp.unevaluatedmatrix(num_qubits, ansatz, thisLdagL,
                                              "D"))

            #Here is where we should be able to specify how to evaluate the matrices.
            #However only the exact method (classical matrix multiplication) has been
            #implemented so far
            if use_qiskit:
                E_mat_evaluated = E_mat_uneval.evaluate_matrix_with_qiskit_circuits(
                    expectation_calculator)
                D_mat_evaluated = D_mat_uneval.evaluate_matrix_with_qiskit_circuits(
                    expectation_calculator)
            else:
                E_mat_evaluated = E_mat_uneval.evaluate_matrix_by_matrix_multiplicaton(
                    initial_state)
                D_mat_evaluated = D_mat_uneval.evaluate_matrix_by_matrix_multiplicaton(
                    initial_state)
            if optimizer == 'feasibility_sdp':
                R_mats_evaluated = []
                for r in R_mats_uneval:
                    if use_qiskit:
                        R_mats_evaluated.append(
                            r.evaluate_matrix_with_qiskit_circuits(
                                expectation_calculator))
                    else:
                        R_mats_evaluated.append(
                            r.evaluate_matrix_by_matrix_multiplicaton(
                                initial_state))
                F_mats_evaluated = []
                for f in F_mats_uneval:
                    if use_qiskit:
                        F_mats_evaluated.append(
                            f.evaluate_matrix_with_qiskit_circuits(
                                expectation_calculator))
                    else:
                        F_mats_evaluated.append(
                            f.evaluate_matrix_by_matrix_multiplicaton(
                                initial_state))
            if optimizer == 'feasibility_sdp':
                IQAE_instance = pp.IQAE_Lindblad(num_qubits,
                                                 D_mat_evaluated,
                                                 E_mat_evaluated,
                                                 R_matrices=R_mats_evaluated,
                                                 F_matrices=F_mats_evaluated,
                                                 gammas=gammas)
            else:
                IQAE_instance = pp.IQAE_Lindblad(num_qubits, D_mat_evaluated,
                                                 E_mat_evaluated)
            IQAE_instance.define_optimizer(
                optimizer,
                eigh_invcond=eigh_inv_cond,
                eig_invcond=eig_inv_cond,
                degeneracy_tol=degeneracy_tol,
                sdp_tolerance_bound=sdp_tolerance_bound)

            IQAE_instance.evaluate()
            density_mat, groundstateenergy = IQAE_instance.get_density_matrix_results(
            )
        #We ONLY append the highest K den mat (should be most accurate result)
        finalresults.append(density_mat)
예제 #4
0
#Need this for pruning
acp.set_initial_ansatz_alpha_for_pruning(ansatz, num_steps)

#finalresults
finalresults = []
finalresults.append(ansatz)

#Run TTQS
for k in range(1, uptowhatK + 1):
    print('Currently at K = ' + str(k))

    #Generate Ansatz for this round
    #ansatz = acp.gen_next_ansatz(ansatz, hamiltonian, num_qubits) #By default, there is no processing when generating next Ansatz
    ansatz = acp.gen_next_ansatz(ansatz,
                                 hamiltonian,
                                 num_qubits,
                                 method="no_processing",
                                 pruning_condition=0.1)

    #Set initial alphas for Ansatz
    #Only 'start_with_initial_state' has been implemented thus far.
    #This basically sets the state we want to evolve as the random, initial state we are using to generate the E and D matrices, for convenience
    acp.set_initial_alphas(num_qubits, ansatz, 'start_with_initial_state')

    E_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, hamiltonian, "E")
    D_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, hamiltonian, "D")

    #Here is where we should be able to specify how to evaluate the matrices. However only the exact method (classical matrix multiplication) has been implemented so far
    E_mat_evaluated = E_mat_uneval.evaluate_matrix_with_qiskit_circuits(
        expectation_calculator)
    #print(E_mat_evaluated)
예제 #5
0
def big_ass_loop(delta,Gamma,mu, observable_obj_list):
    """
    Here, observable_obj_list refers to a list of observable objects
    """
    hamiltonian = generate_XXZ_hamiltonian(num_qubits, delta)
    gammas, L_terms = generate_nonlocaljump_gamma_and_Lterms(num_qubits,Gamma,mu)
    ansatz = acp.initial_ansatz(num_qubits)
    #get the steady state using qutip(lol)
    qtp_hamiltonian = qutip.Qobj(hamiltonian.to_matrixform())
    qtp_Lterms = [qutip.Qobj(i.to_matrixform()) for i in L_terms]
    qtp_C_ops = [np.sqrt(gammas[i]) * qtp_Lterms[i] for i in range(len(qtp_Lterms))]
    qtp_rho_ss = qutip.steadystate(qtp_hamiltonian, qtp_C_ops,method='iterative-gmres')

    #compute the theoretical observable expectation values
    observable_matrixforms = [observable.to_matrixform() for observable in observable_obj_list]
    theoretical_expectation_values = [np.trace(qtp_rho_ss.full() @ observable_matform) for observable_matform in observable_matrixforms]

    #%%
    #compute GQAS matrices
    fidelity_results = dict()
    observable_expectation_results = dict()
    for k in range(1, uptowhatK + 1):
        print('##########################################')
        print('K = ' +str(k))
        # max_k_val = k
        #Generate Ansatz for this round
        if random_selection_new:
            ansatz = acp.gen_next_ansatz(ansatz, hamiltonian, num_qubits,method='random_selection_new',num_new_to_add=numberofnewstatestoadd)
        else:
            ansatz = acp.gen_next_ansatz(ansatz, hamiltonian, num_qubits)
        O_matrices_uneval = []
        for observable in observable_obj_list:
            O_matrix_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, observable, "O")
            O_matrices_uneval.append(O_matrix_uneval)
        E_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, hamiltonian, "E")
        D_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, hamiltonian, "D")

        if optimizer == 'feasibility_sdp':
            R_mats_uneval = []
            F_mats_uneval = []
            for thisL in L_terms:
                R_mats_uneval.append(mcp.unevaluatedmatrix(num_qubits,ansatz,thisL,"D"))
                thisLdagL = hcp.multiply_hamiltonians(hcp.dagger_hamiltonian(thisL),thisL)
                F_mats_uneval.append(mcp.unevaluatedmatrix(num_qubits,ansatz,thisLdagL,"D"))
        
        #Here is where we should be able to specify how to evaluate the matrices.
        #However only the exact method (classical matrix multiplication) has been
        #implemented so far
        if use_qiskit:
            E_mat_evaluated = E_mat_uneval.evaluate_matrix_with_qiskit_circuits(expectation_calculator)
            D_mat_evaluated = D_mat_uneval.evaluate_matrix_with_qiskit_circuits(expectation_calculator)
            O_matrices_evaluated = [i.evaluate_matrix_with_qiskit_circuits(expectation_calculator) for i in O_matrices_uneval]
        else:
            E_mat_evaluated = E_mat_uneval.evaluate_matrix_by_matrix_multiplicaton(initial_state)
            D_mat_evaluated = D_mat_uneval.evaluate_matrix_by_matrix_multiplicaton(initial_state)
            O_matrices_evaluated = [i.evaluate_matrix_by_matrix_multiplicaton(initial_state) for i in O_matrices_uneval]
        if optimizer == 'feasibility_sdp':
            R_mats_evaluated = []
            for r in R_mats_uneval:
                if use_qiskit:
                    R_mats_evaluated.append(r.evaluate_matrix_with_qiskit_circuits(expectation_calculator))
                else:
                    R_mats_evaluated.append(r.evaluate_matrix_by_matrix_multiplicaton(initial_state))
            F_mats_evaluated = []
            for f in F_mats_uneval:
                if use_qiskit:
                    F_mats_evaluated.append(f.evaluate_matrix_with_qiskit_circuits(expectation_calculator))
                else:
                    F_mats_evaluated.append(f.evaluate_matrix_by_matrix_multiplicaton(initial_state))

        ##########################################
        #Start of the classical post-processing. #
        ##########################################
        if optimizer == 'feasibility_sdp':
            IQAE_instance = pp.IQAE_Lindblad(num_qubits, D_mat_evaluated, E_mat_evaluated,R_matrices = R_mats_evaluated,F_matrices = F_mats_evaluated,gammas = gammas)
        else:
            IQAE_instance = pp.IQAE_Lindblad(num_qubits, D_mat_evaluated, E_mat_evaluated)


        IQAE_instance.define_optimizer(optimizer, eigh_invcond=eigh_inv_cond,eig_invcond=eig_inv_cond,degeneracy_tol=degeneracy_tol,sdp_tolerance_bound=sdp_tolerance_bound)

        IQAE_instance.evaluate()
        # IQAE_instance.evaluate(kh_test=False)
        #all_energies,all_states = IQAE_instance.get_results_all()
        result_dictionary = pp.analyze_density_matrix(num_qubits,initial_state,IQAE_instance,E_mat_evaluated,ansatz,hamiltonian,gammas,L_terms,qtp_rho_ss,O_matrices_evaluated)
        observable_expectation_results[k] = result_dictionary['observable_expectation']
        fidelity_results[k] = result_dictionary['fidelity']
            #if round(fidelity, 6) == 1:
            #    print("breaking loop as fidelity = 1 already")
            #    #raise(RuntimeError("Fidelity = 1!"))
            #    break
    #print('JON: Got %s results'%len(fidelity_results))
    return (observable_expectation_results, theoretical_expectation_values, fidelity_results)