L_terms.append( hcp.generate_arbitary_hamiltonian(num_qubits, [0.5, -0.5j], [ '0' * i + '1' + '0' * (num_qubits - 1 - i), '0' * i + '2' + '0' * (num_qubits - 1 - i) ])) #L_terms = [hcp.generate_arbitary_hamiltonian(num_qubits,[1],['30'])] #L_terms.append(hcp.generate_arbitary_hamiltonian(num_qubits,[0.5,-0.5j],['10','20'])) #L_terms.append(hcp.generate_arbitary_hamiltonian(num_qubits,[1],['03'])) #L_terms.append(hcp.generate_arbitary_hamiltonian(num_qubits,[0.5,-0.5j],['01','02'])) else: hamiltonian = hcp.generate_arbitary_hamiltonian( num_qubits, list(pauli_decomp.values()), list(pauli_decomp.keys())) #print('Beta values are ' + str(hamiltonian.return_betas())) ansatz = acp.initial_ansatz(num_qubits) ansatzlist = [] ansatzlist.append(ansatz) betamatrixlist = [] #Run IQAE for k in range(1, uptowhatK + 1): print('##########################################') print('K = ' + str(k)) #Generate Ansatz for this round ansatz = acp.gen_next_ansatz(ansatz, hamiltonian, num_qubits, method='random_selection_new', num_new_to_add=numberofnewstatestoadd) ansatzlist.append(ansatz)
def big_ass_loop(delta,Gamma,mu, observable_obj_list): """ Here, observable_obj_list refers to a list of observable objects """ hamiltonian = generate_XXZ_hamiltonian(num_qubits, delta) gammas, L_terms = generate_nonlocaljump_gamma_and_Lterms(num_qubits,Gamma,mu) ansatz = acp.initial_ansatz(num_qubits) #get the steady state using qutip(lol) qtp_hamiltonian = qutip.Qobj(hamiltonian.to_matrixform()) qtp_Lterms = [qutip.Qobj(i.to_matrixform()) for i in L_terms] qtp_C_ops = [np.sqrt(gammas[i]) * qtp_Lterms[i] for i in range(len(qtp_Lterms))] qtp_rho_ss = qutip.steadystate(qtp_hamiltonian, qtp_C_ops,method='iterative-gmres') #compute the theoretical observable expectation values observable_matrixforms = [observable.to_matrixform() for observable in observable_obj_list] theoretical_expectation_values = [np.trace(qtp_rho_ss.full() @ observable_matform) for observable_matform in observable_matrixforms] #%% #compute GQAS matrices fidelity_results = dict() observable_expectation_results = dict() for k in range(1, uptowhatK + 1): print('##########################################') print('K = ' +str(k)) # max_k_val = k #Generate Ansatz for this round if random_selection_new: ansatz = acp.gen_next_ansatz(ansatz, hamiltonian, num_qubits,method='random_selection_new',num_new_to_add=numberofnewstatestoadd) else: ansatz = acp.gen_next_ansatz(ansatz, hamiltonian, num_qubits) O_matrices_uneval = [] for observable in observable_obj_list: O_matrix_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, observable, "O") O_matrices_uneval.append(O_matrix_uneval) E_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, hamiltonian, "E") D_mat_uneval = mcp.unevaluatedmatrix(num_qubits, ansatz, hamiltonian, "D") if optimizer == 'feasibility_sdp': R_mats_uneval = [] F_mats_uneval = [] for thisL in L_terms: R_mats_uneval.append(mcp.unevaluatedmatrix(num_qubits,ansatz,thisL,"D")) thisLdagL = hcp.multiply_hamiltonians(hcp.dagger_hamiltonian(thisL),thisL) F_mats_uneval.append(mcp.unevaluatedmatrix(num_qubits,ansatz,thisLdagL,"D")) #Here is where we should be able to specify how to evaluate the matrices. #However only the exact method (classical matrix multiplication) has been #implemented so far if use_qiskit: E_mat_evaluated = E_mat_uneval.evaluate_matrix_with_qiskit_circuits(expectation_calculator) D_mat_evaluated = D_mat_uneval.evaluate_matrix_with_qiskit_circuits(expectation_calculator) O_matrices_evaluated = [i.evaluate_matrix_with_qiskit_circuits(expectation_calculator) for i in O_matrices_uneval] else: E_mat_evaluated = E_mat_uneval.evaluate_matrix_by_matrix_multiplicaton(initial_state) D_mat_evaluated = D_mat_uneval.evaluate_matrix_by_matrix_multiplicaton(initial_state) O_matrices_evaluated = [i.evaluate_matrix_by_matrix_multiplicaton(initial_state) for i in O_matrices_uneval] if optimizer == 'feasibility_sdp': R_mats_evaluated = [] for r in R_mats_uneval: if use_qiskit: R_mats_evaluated.append(r.evaluate_matrix_with_qiskit_circuits(expectation_calculator)) else: R_mats_evaluated.append(r.evaluate_matrix_by_matrix_multiplicaton(initial_state)) F_mats_evaluated = [] for f in F_mats_uneval: if use_qiskit: F_mats_evaluated.append(f.evaluate_matrix_with_qiskit_circuits(expectation_calculator)) else: F_mats_evaluated.append(f.evaluate_matrix_by_matrix_multiplicaton(initial_state)) ########################################## #Start of the classical post-processing. # ########################################## if optimizer == 'feasibility_sdp': IQAE_instance = pp.IQAE_Lindblad(num_qubits, D_mat_evaluated, E_mat_evaluated,R_matrices = R_mats_evaluated,F_matrices = F_mats_evaluated,gammas = gammas) else: IQAE_instance = pp.IQAE_Lindblad(num_qubits, D_mat_evaluated, E_mat_evaluated) IQAE_instance.define_optimizer(optimizer, eigh_invcond=eigh_inv_cond,eig_invcond=eig_inv_cond,degeneracy_tol=degeneracy_tol,sdp_tolerance_bound=sdp_tolerance_bound) IQAE_instance.evaluate() # IQAE_instance.evaluate(kh_test=False) #all_energies,all_states = IQAE_instance.get_results_all() result_dictionary = pp.analyze_density_matrix(num_qubits,initial_state,IQAE_instance,E_mat_evaluated,ansatz,hamiltonian,gammas,L_terms,qtp_rho_ss,O_matrices_evaluated) observable_expectation_results[k] = result_dictionary['observable_expectation'] fidelity_results[k] = result_dictionary['fidelity'] #if round(fidelity, 6) == 1: # print("breaking loop as fidelity = 1 already") # #raise(RuntimeError("Fidelity = 1!")) # break #print('JON: Got %s results'%len(fidelity_results)) return (observable_expectation_results, theoretical_expectation_values, fidelity_results)