def test_invert_ants_transform(self): img = ants.image_read(ants.get_ants_data("r16")).clone('float') tx = ants.new_ants_transform(dimension=2) tx.set_parameters((0.9, 0, 0, 1.1, 10, 11)) img_transformed = tx.apply_to_image(img, img) inv_tx = ants.invert_ants_transform(tx) img_orig = inv_tx.apply_to_image(img_transformed, img_transformed)
def lung_extraction(image, modality="proton", antsxnet_cache_directory=None, verbose=False): """ Perform proton or ct lung extraction using U-net. Arguments --------- image : ANTsImage input image modality : string Modality image type. Options include "ct", "proton", "protonLobes", "maskLobes", and "ventilation". antsxnet_cache_directory : string Destination directory for storing the downloaded template and model weights. Since these can be resused, if is None, these data will be downloaded to a ~/.keras/ANTsXNet/. verbose : boolean Print progress to the screen. Returns ------- Dictionary of ANTs segmentation and probability images. Example ------- >>> output = lung_extraction(lung_image, modality="proton") """ from ..architectures import create_unet_model_2d from ..architectures import create_unet_model_3d from ..utilities import get_pretrained_network from ..utilities import get_antsxnet_data from ..utilities import pad_or_crop_image_to_size if image.dimension != 3: raise ValueError( "Image dimension must be 3." ) if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" image_mods = [modality] channel_size = len(image_mods) weights_file_name = None unet_model = None if modality == "proton": weights_file_name = get_pretrained_network("protonLungMri", antsxnet_cache_directory=antsxnet_cache_directory) classes = ("background", "left_lung", "right_lung") number_of_classification_labels = len(classes) reorient_template_file_name_path = get_antsxnet_data("protonLungTemplate", antsxnet_cache_directory=antsxnet_cache_directory) reorient_template = ants.image_read(reorient_template_file_name_path) resampled_image_size = reorient_template.shape unet_model = create_unet_model_3d((*resampled_image_size, channel_size), number_of_outputs=number_of_classification_labels, number_of_layers=4, number_of_filters_at_base_layer=16, dropout_rate=0.0, convolution_kernel_size=(7, 7, 5), deconvolution_kernel_size=(7, 7, 5)) unet_model.load_weights(weights_file_name) if verbose == True: print("Lung extraction: normalizing image to the template.") center_of_mass_template = ants.get_center_of_mass(reorient_template * 0 + 1) center_of_mass_image = ants.get_center_of_mass(image * 0 + 1) translation = np.asarray(center_of_mass_image) - np.asarray(center_of_mass_template) xfrm = ants.create_ants_transform(transform_type="Euler3DTransform", center=np.asarray(center_of_mass_template), translation=translation) warped_image = ants.apply_ants_transform_to_image(xfrm, image, reorient_template) batchX = np.expand_dims(warped_image.numpy(), axis=0) batchX = np.expand_dims(batchX, axis=-1) batchX = (batchX - batchX.mean()) / batchX.std() predicted_data = unet_model.predict(batchX, verbose=int(verbose)) origin = warped_image.origin spacing = warped_image.spacing direction = warped_image.direction probability_images_array = list() for i in range(number_of_classification_labels): probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, i]), origin=origin, spacing=spacing, direction=direction)) if verbose == True: print("Lung extraction: renormalize probability mask to native space.") for i in range(number_of_classification_labels): probability_images_array[i] = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_images_array[i], image) image_matrix = ants.image_list_to_matrix(probability_images_array, image * 0 + 1) segmentation_matrix = np.argmax(image_matrix, axis=0) segmentation_image = ants.matrix_to_images( np.expand_dims(segmentation_matrix, axis=0), image * 0 + 1)[0] return_dict = {'segmentation_image' : segmentation_image, 'probability_images' : probability_images_array} return(return_dict) if modality == "protonLobes" or modality == "maskLobes": reorient_template_file_name_path = get_antsxnet_data("protonLungTemplate", antsxnet_cache_directory=antsxnet_cache_directory) reorient_template = ants.image_read(reorient_template_file_name_path) resampled_image_size = reorient_template.shape spatial_priors_file_name_path = get_antsxnet_data("protonLobePriors", antsxnet_cache_directory=antsxnet_cache_directory) spatial_priors = ants.image_read(spatial_priors_file_name_path) priors_image_list = ants.ndimage_to_list(spatial_priors) channel_size = 1 + len(priors_image_list) number_of_classification_labels = 1 + len(priors_image_list) unet_model = create_unet_model_3d((*resampled_image_size, channel_size), number_of_outputs=number_of_classification_labels, mode="classification", number_of_filters_at_base_layer=16, number_of_layers=4, convolution_kernel_size=(3, 3, 3), deconvolution_kernel_size=(2, 2, 2), dropout_rate=0.0, weight_decay=0, additional_options=("attentionGating",)) if modality == "protonLobes": penultimate_layer = unet_model.layers[-2].output outputs2 = Conv3D(filters=1, kernel_size=(1, 1, 1), activation='sigmoid', kernel_regularizer=regularizers.l2(0.0))(penultimate_layer) unet_model = Model(inputs=unet_model.input, outputs=[unet_model.output, outputs2]) weights_file_name = get_pretrained_network("protonLobes", antsxnet_cache_directory=antsxnet_cache_directory) else: weights_file_name = get_pretrained_network("maskLobes", antsxnet_cache_directory=antsxnet_cache_directory) unet_model.load_weights(weights_file_name) if verbose == True: print("Lung extraction: normalizing image to the template.") center_of_mass_template = ants.get_center_of_mass(reorient_template * 0 + 1) center_of_mass_image = ants.get_center_of_mass(image * 0 + 1) translation = np.asarray(center_of_mass_image) - np.asarray(center_of_mass_template) xfrm = ants.create_ants_transform(transform_type="Euler3DTransform", center=np.asarray(center_of_mass_template), translation=translation) warped_image = ants.apply_ants_transform_to_image(xfrm, image, reorient_template) warped_array = warped_image.numpy() if modality == "protonLobes": warped_array = (warped_array - warped_array.mean()) / warped_array.std() else: warped_array[warped_array != 0] = 1 batchX = np.zeros((1, *warped_array.shape, channel_size)) batchX[0,:,:,:,0] = warped_array for i in range(len(priors_image_list)): batchX[0,:,:,:,i+1] = priors_image_list[i].numpy() predicted_data = unet_model.predict(batchX, verbose=int(verbose)) origin = warped_image.origin spacing = warped_image.spacing direction = warped_image.direction probability_images_array = list() for i in range(number_of_classification_labels): if modality == "protonLobes": probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0][0, :, :, :, i]), origin=origin, spacing=spacing, direction=direction)) else: probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, i]), origin=origin, spacing=spacing, direction=direction)) if verbose == True: print("Lung extraction: renormalize probability images to native space.") for i in range(number_of_classification_labels): probability_images_array[i] = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_images_array[i], image) image_matrix = ants.image_list_to_matrix(probability_images_array, image * 0 + 1) segmentation_matrix = np.argmax(image_matrix, axis=0) segmentation_image = ants.matrix_to_images( np.expand_dims(segmentation_matrix, axis=0), image * 0 + 1)[0] if modality == "protonLobes": whole_lung_mask = ants.from_numpy(np.squeeze(predicted_data[1][0, :, :, :, 0]), origin=origin, spacing=spacing, direction=direction) whole_lung_mask = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), whole_lung_mask, image) return_dict = {'segmentation_image' : segmentation_image, 'probability_images' : probability_images_array, 'whole_lung_mask_image' : whole_lung_mask} return(return_dict) else: return_dict = {'segmentation_image' : segmentation_image, 'probability_images' : probability_images_array} return(return_dict) elif modality == "ct": ################################ # # Preprocess image # ################################ if verbose == True: print("Preprocess CT image.") def closest_simplified_direction_matrix(direction): closest = np.floor(np.abs(direction) + 0.5) closest[direction < 0] *= -1.0 return closest simplified_direction = closest_simplified_direction_matrix(image.direction) reference_image_size = (128, 128, 128) ct_preprocessed = ants.resample_image(image, reference_image_size, use_voxels=True, interp_type=0) ct_preprocessed[ct_preprocessed < -1000] = -1000 ct_preprocessed[ct_preprocessed > 400] = 400 ct_preprocessed.set_direction(simplified_direction) ct_preprocessed.set_origin((0, 0, 0)) ct_preprocessed.set_spacing((1, 1, 1)) ################################ # # Reorient image # ################################ reference_image = ants.make_image(reference_image_size, voxval=0, spacing=(1, 1, 1), origin=(0, 0, 0), direction=np.identity(3)) center_of_mass_reference = np.floor(ants.get_center_of_mass(reference_image * 0 + 1)) center_of_mass_image = np.floor(ants.get_center_of_mass(ct_preprocessed * 0 + 1)) translation = np.asarray(center_of_mass_image) - np.asarray(center_of_mass_reference) xfrm = ants.create_ants_transform(transform_type="Euler3DTransform", center=np.asarray(center_of_mass_reference), translation=translation) ct_preprocessed = ((ct_preprocessed - ct_preprocessed.min()) / (ct_preprocessed.max() - ct_preprocessed.min())) ct_preprocessed_warped = ants.apply_ants_transform_to_image( xfrm, ct_preprocessed, reference_image, interpolation="nearestneighbor") ct_preprocessed_warped = ((ct_preprocessed_warped - ct_preprocessed_warped.min()) / (ct_preprocessed_warped.max() - ct_preprocessed_warped.min())) - 0.5 ################################ # # Build models and load weights # ################################ if verbose == True: print("Build model and load weights.") weights_file_name = get_pretrained_network("lungCtWithPriorsSegmentationWeights", antsxnet_cache_directory=antsxnet_cache_directory) classes = ("background", "left lung", "right lung", "airways") number_of_classification_labels = len(classes) luna16_priors = ants.ndimage_to_list(ants.image_read(get_antsxnet_data("luna16LungPriors"))) for i in range(len(luna16_priors)): luna16_priors[i] = ants.resample_image(luna16_priors[i], reference_image_size, use_voxels=True) channel_size = len(luna16_priors) + 1 unet_model = create_unet_model_3d((*reference_image_size, channel_size), number_of_outputs=number_of_classification_labels, mode="classification", number_of_layers=4, number_of_filters_at_base_layer=16, dropout_rate=0.0, convolution_kernel_size=(3, 3, 3), deconvolution_kernel_size=(2, 2, 2), weight_decay=1e-5, additional_options=("attentionGating",)) unet_model.load_weights(weights_file_name) ################################ # # Do prediction and normalize to native space # ################################ if verbose == True: print("Prediction.") batchX = np.zeros((1, *reference_image_size, channel_size)) batchX[:,:,:,:,0] = ct_preprocessed_warped.numpy() for i in range(len(luna16_priors)): batchX[:,:,:,:,i+1] = luna16_priors[i].numpy() - 0.5 predicted_data = unet_model.predict(batchX, verbose=verbose) probability_images = list() for i in range(number_of_classification_labels): if verbose == True: print("Reconstructing image", classes[i]) probability_image = ants.from_numpy(np.squeeze(predicted_data[:,:,:,:,i]), origin=ct_preprocessed_warped.origin, spacing=ct_preprocessed_warped.spacing, direction=ct_preprocessed_warped.direction) probability_image = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_image, ct_preprocessed) probability_image = ants.resample_image(probability_image, resample_params=image.shape, use_voxels=True, interp_type=0) probability_image = ants.copy_image_info(image, probability_image) probability_images.append(probability_image) image_matrix = ants.image_list_to_matrix(probability_images, image * 0 + 1) segmentation_matrix = np.argmax(image_matrix, axis=0) segmentation_image = ants.matrix_to_images( np.expand_dims(segmentation_matrix, axis=0), image * 0 + 1)[0] return_dict = {'segmentation_image' : segmentation_image, 'probability_images' : probability_images} return(return_dict) elif modality == "ventilation": ################################ # # Preprocess image # ################################ if verbose == True: print("Preprocess ventilation image.") template_size = (256, 256) image_modalities = ("Ventilation",) channel_size = len(image_modalities) preprocessed_image = (image - image.mean()) / image.std() ants.set_direction(preprocessed_image, np.identity(3)) ################################ # # Build models and load weights # ################################ unet_model = create_unet_model_2d((*template_size, channel_size), number_of_outputs=1, mode='sigmoid', number_of_layers=4, number_of_filters_at_base_layer=32, dropout_rate=0.0, convolution_kernel_size=(3, 3), deconvolution_kernel_size=(2, 2), weight_decay=0) if verbose == True: print("Whole lung mask: retrieving model weights.") weights_file_name = get_pretrained_network("wholeLungMaskFromVentilation", antsxnet_cache_directory=antsxnet_cache_directory) unet_model.load_weights(weights_file_name) ################################ # # Extract slices # ################################ spacing = ants.get_spacing(preprocessed_image) dimensions_to_predict = (spacing.index(max(spacing)),) total_number_of_slices = 0 for d in range(len(dimensions_to_predict)): total_number_of_slices += preprocessed_image.shape[dimensions_to_predict[d]] batchX = np.zeros((total_number_of_slices, *template_size, channel_size)) slice_count = 0 for d in range(len(dimensions_to_predict)): number_of_slices = preprocessed_image.shape[dimensions_to_predict[d]] if verbose == True: print("Extracting slices for dimension ", dimensions_to_predict[d], ".") for i in range(number_of_slices): ventilation_slice = pad_or_crop_image_to_size(ants.slice_image(preprocessed_image, dimensions_to_predict[d], i), template_size) batchX[slice_count,:,:,0] = ventilation_slice.numpy() slice_count += 1 ################################ # # Do prediction and then restack into the image # ################################ if verbose == True: print("Prediction.") prediction = unet_model.predict(batchX, verbose=verbose) permutations = list() permutations.append((0, 1, 2)) permutations.append((1, 0, 2)) permutations.append((1, 2, 0)) probability_image = ants.image_clone(image) * 0 current_start_slice = 0 for d in range(len(dimensions_to_predict)): current_end_slice = current_start_slice + preprocessed_image.shape[dimensions_to_predict[d]] - 1 which_batch_slices = range(current_start_slice, current_end_slice) prediction_per_dimension = prediction[which_batch_slices,:,:,0] prediction_array = np.transpose(np.squeeze(prediction_per_dimension), permutations[dimensions_to_predict[d]]) prediction_image = ants.copy_image_info(image, pad_or_crop_image_to_size(ants.from_numpy(prediction_array), image.shape)) probability_image = probability_image + (prediction_image - probability_image) / (d + 1) current_start_slice = current_end_slice + 1 return(probability_image) else: return ValueError("Unrecognized modality.")
def sysu_media_wmh_segmentation(flair, t1=None, do_preprocessing=True, use_ensemble=True, use_axial_slices_only=True, antsxnet_cache_directory=None, verbose=False): """ Perform WMH segmentation using the winning submission in the MICCAI 2017 challenge by the sysu_media team using FLAIR or T1/FLAIR. The MICCAI challenge is discussed in https://pubmed.ncbi.nlm.nih.gov/30908194/ with the sysu_media's team entry is discussed in https://pubmed.ncbi.nlm.nih.gov/30125711/ with the original implementation available here: https://github.com/hongweilibran/wmh_ibbmTum Arguments --------- flair : ANTsImage input 3-D FLAIR brain image (not skull-stripped). t1 : ANTsImage input 3-D T1 brain image (not skull-stripped). do_preprocessing : boolean perform n4 bias correction? use_ensemble : boolean check whether to use all 3 sets of weights. use_axial_slices_only : boolean If True, use original implementation which was trained on axial slices. If False, use ANTsXNet variant implementation which applies the slice-by-slice models to all 3 dimensions and averages the results. antsxnet_cache_directory : string Destination directory for storing the downloaded template and model weights. Since these can be resused, if is None, these data will be downloaded to a ~/.keras/ANTsXNet/. verbose : boolean Print progress to the screen. Returns ------- WMH segmentation probability image Example ------- >>> image = ants.image_read("flair.nii.gz") >>> probability_mask = sysu_media_wmh_segmentation(image) """ from ..architectures import create_sysu_media_unet_model_2d from ..utilities import brain_extraction from ..utilities import crop_image_center from ..utilities import get_pretrained_network from ..utilities import preprocess_brain_image from ..utilities import pad_or_crop_image_to_size if flair.dimension != 3: raise ValueError("Image dimension must be 3.") if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" ################################ # # Preprocess images # ################################ flair_preprocessed = flair if do_preprocessing == True: flair_preprocessing = preprocess_brain_image( flair, truncate_intensity=(0.01, 0.99), do_brain_extraction=False, do_bias_correction=True, do_denoising=False, antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) flair_preprocessed = flair_preprocessing["preprocessed_image"] number_of_channels = 1 if t1 is not None: t1_preprocessed = t1 if do_preprocessing == True: t1_preprocessing = preprocess_brain_image( t1, truncate_intensity=(0.01, 0.99), do_brain_extraction=False, do_bias_correction=True, do_denoising=False, antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) t1_preprocessed = t1_preprocessing["preprocessed_image"] number_of_channels = 2 ################################ # # Estimate mask # ################################ brain_mask = None if verbose == True: print("Estimating brain mask.") if t1 is not None: brain_mask = brain_extraction(t1, modality="t1") else: brain_mask = brain_extraction(flair, modality="flair") reference_image = ants.make_image((200, 200, 200), voxval=1, spacing=(1, 1, 1), origin=(0, 0, 0), direction=np.identity(3)) center_of_mass_reference = ants.get_center_of_mass(reference_image) center_of_mass_image = ants.get_center_of_mass(brain_mask) translation = np.asarray(center_of_mass_image) - np.asarray( center_of_mass_reference) xfrm = ants.create_ants_transform( transform_type="Euler3DTransform", center=np.asarray(center_of_mass_reference), translation=translation) flair_preprocessed_warped = ants.apply_ants_transform_to_image( xfrm, flair_preprocessed, reference_image) brain_mask_warped = ants.threshold_image( ants.apply_ants_transform_to_image(xfrm, brain_mask, reference_image), 0.5, 1.1, 1, 0) if t1 is not None: t1_preprocessed_warped = ants.apply_ants_transform_to_image( xfrm, t1_preprocessed, reference_image) ################################ # # Gaussian normalize intensity based on brain mask # ################################ mean_flair = flair_preprocessed_warped[brain_mask_warped > 0].mean() std_flair = flair_preprocessed_warped[brain_mask_warped > 0].std() flair_preprocessed_warped = (flair_preprocessed_warped - mean_flair) / std_flair if number_of_channels == 2: mean_t1 = t1_preprocessed_warped[brain_mask_warped > 0].mean() std_t1 = t1_preprocessed_warped[brain_mask_warped > 0].std() t1_preprocessed_warped = (t1_preprocessed_warped - mean_t1) / std_t1 ################################ # # Build models and load weights # ################################ number_of_models = 1 if use_ensemble == True: number_of_models = 3 unet_models = list() for i in range(number_of_models): if number_of_channels == 1: weights_file_name = get_pretrained_network( "sysuMediaWmhFlairOnlyModel" + str(i), antsxnet_cache_directory=antsxnet_cache_directory) else: weights_file_name = get_pretrained_network( "sysuMediaWmhFlairT1Model" + str(i), antsxnet_cache_directory=antsxnet_cache_directory) unet_models.append( create_sysu_media_unet_model_2d((200, 200, number_of_channels))) unet_models[i].load_weights(weights_file_name) ################################ # # Extract slices # ################################ dimensions_to_predict = [2] if use_axial_slices_only == False: dimensions_to_predict = list(range(3)) total_number_of_slices = 0 for d in range(len(dimensions_to_predict)): total_number_of_slices += flair_preprocessed_warped.shape[ dimensions_to_predict[d]] batchX = np.zeros((total_number_of_slices, 200, 200, number_of_channels)) slice_count = 0 for d in range(len(dimensions_to_predict)): number_of_slices = flair_preprocessed_warped.shape[ dimensions_to_predict[d]] if verbose == True: print("Extracting slices for dimension ", dimensions_to_predict[d], ".") for i in range(number_of_slices): flair_slice = pad_or_crop_image_to_size( ants.slice_image(flair_preprocessed_warped, dimensions_to_predict[d], i), (200, 200)) batchX[slice_count, :, :, 0] = flair_slice.numpy() if number_of_channels == 2: t1_slice = pad_or_crop_image_to_size( ants.slice_image(t1_preprocessed_warped, dimensions_to_predict[d], i), (200, 200)) batchX[slice_count, :, :, 1] = t1_slice.numpy() slice_count += 1 ################################ # # Do prediction and then restack into the image # ################################ if verbose == True: print("Prediction.") prediction = unet_models[0].predict(batchX, verbose=verbose) if number_of_models > 1: for i in range(1, number_of_models, 1): prediction += unet_models[i].predict(batchX, verbose=verbose) prediction /= number_of_models permutations = list() permutations.append((0, 1, 2)) permutations.append((1, 0, 2)) permutations.append((1, 2, 0)) prediction_image_average = ants.image_clone(flair_preprocessed_warped) * 0 current_start_slice = 0 for d in range(len(dimensions_to_predict)): current_end_slice = current_start_slice + flair_preprocessed_warped.shape[ dimensions_to_predict[d]] - 1 which_batch_slices = range(current_start_slice, current_end_slice) prediction_per_dimension = prediction[which_batch_slices, :, :, :] prediction_array = np.transpose(np.squeeze(prediction_per_dimension), permutations[dimensions_to_predict[d]]) prediction_image = ants.copy_image_info( flair_preprocessed_warped, pad_or_crop_image_to_size(ants.from_numpy(prediction_array), flair_preprocessed_warped.shape)) prediction_image_average = prediction_image_average + ( prediction_image - prediction_image_average) / (d + 1) current_start_slice = current_end_slice + 1 probability_image = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), prediction_image_average, flair) return (probability_image)
probability_mask_refine_stage_resampled = ants.from_numpy( prediction_refine_stage_array, origin=image_resampled.origin, spacing=image_resampled.spacing, direction=image_resampled.direction) probability_mask_refine_stage = ants.resample_image_to_target( probability_mask_refine_stage_resampled, image) ants.image_write(probability_mask_refine_stage, output_file_name) end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time: ", elapsed_time, " seconds)") print("Renormalize to native space") start_time = time.time() probability_image = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_mask_refine_stage, image) end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time: ", elapsed_time, " seconds)") print("Writing", output_file_name) start_time = time.time() ants.image_write(probability_image, output_file_name) end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time: ", elapsed_time, " seconds)") end_time_total = time.time() elapsed_time_total = end_time_total - start_time_total print(" (Total elapsed time: ", elapsed_time, " seconds)")
def lung_extraction(image, modality="proton", output_directory=None, verbose=None): """ Perform proton or ct lung extraction using U-net. Arguments --------- image : ANTsImage input image modality : string Modality image type. Options include "ct" and "proton". output_directory : string Destination directory for storing the downloaded template and model weights. Since these can be resused, if is None, these data will be downloaded to a tempfile. verbose : boolean Print progress to the screen. Returns ------- Dictionary of ANTs segmentation and probability images. Example ------- >>> output = lung_extraction(lung_image, modality="proton") """ from ..architectures import create_unet_model_3d from ..utilities import get_pretrained_network if image.dimension != 3: raise ValueError("Image dimension must be 3.") image_mods = [modality] channel_size = len(image_mods) weights_file_name = None unet_model = None if modality == "proton": if output_directory is not None: weights_file_name = output_directory + "/protonLungSegmentationWeights.h5" if not os.path.exists(weights_file_name): if verbose == True: print("Lung extraction: downloading weights.") weights_file_name = get_pretrained_network( "protonLungMri", weights_file_name) else: weights_file_name = get_pretrained_network("protonLungMri") classes = ("background", "left_lung", "right_lung") number_of_classification_labels = len(classes) reorient_template_file_name = None reorient_template_file_exists = False if output_directory is not None: reorient_template_file_name = output_directory + "/protonLungTemplate.nii.gz" if os.path.exists(reorient_template_file_name): reorient_template_file_exists = True reorient_template = None if output_directory is None or reorient_template_file_exists == False: reorient_template_file = tempfile.NamedTemporaryFile( suffix=".nii.gz") reorient_template_file.close() template_file_name = reorient_template_file.name template_url = "https://ndownloader.figshare.com/files/22707338" if not os.path.exists(template_file_name): if verbose == True: print("Lung extraction: downloading template.") r = requests.get(template_url) with open(template_file_name, 'wb') as f: f.write(r.content) reorient_template = ants.image_read(template_file_name) if output_directory is not None: shutil.copy(template_file_name, reorient_template_file_name) else: reorient_template = ants.image_read(reorient_template_file_name) resampled_image_size = reorient_template.shape unet_model = create_unet_model_3d( (*resampled_image_size, channel_size), number_of_outputs=number_of_classification_labels, number_of_layers=4, number_of_filters_at_base_layer=16, dropout_rate=0.0, convolution_kernel_size=(7, 7, 5), deconvolution_kernel_size=(7, 7, 5)) unet_model.load_weights(weights_file_name) if verbose == True: print("Lung extraction: normalizing image to the template.") center_of_mass_template = ants.get_center_of_mass(reorient_template * 0 + 1) center_of_mass_image = ants.get_center_of_mass(image * 0 + 1) translation = np.asarray(center_of_mass_image) - np.asarray( center_of_mass_template) xfrm = ants.create_ants_transform( transform_type="Euler3DTransform", center=np.asarray(center_of_mass_template), translation=translation) warped_image = ants.apply_ants_transform_to_image( xfrm, image, reorient_template) batchX = np.expand_dims(warped_image.numpy(), axis=0) batchX = np.expand_dims(batchX, axis=-1) batchX = (batchX - batchX.mean()) / batchX.std() predicted_data = unet_model.predict(batchX, verbose=0) origin = warped_image.origin spacing = warped_image.spacing direction = warped_image.direction probability_images_array = list() for i in range(number_of_classification_labels): probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, i]), origin=origin, spacing=spacing, direction=direction)) if verbose == True: print( "Lung extraction: renormalize probability mask to native space." ) for i in range(number_of_classification_labels): probability_images_array[i] = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_images_array[i], image) image_matrix = ants.image_list_to_matrix(probability_images_array, image * 0 + 1) segmentation_matrix = np.argmax(image_matrix, axis=0) segmentation_image = ants.matrix_to_images( np.expand_dims(segmentation_matrix, axis=0), image * 0 + 1)[0] return_dict = { 'segmentation_image': segmentation_image, 'probability_images': probability_images_array } return (return_dict) elif modality == "ct": if output_directory is not None: weights_file_name = output_directory + "/ctLungSegmentationWeights.h5" if not os.path.exists(weights_file_name): if verbose == True: print("Lung extraction: downloading weights.") weights_file_name = get_pretrained_network( "ctHumanLung", weights_file_name) else: weights_file_name = get_pretrained_network("ctHumanLung") classes = ("background", "left_lung", "right_lung", "trachea") number_of_classification_labels = len(classes) reorient_template_file_name = None reorient_template_file_exists = False if output_directory is not None: reorient_template_file_name = output_directory + "/ctLungTemplate.nii.gz" if os.path.exists(reorient_template_file_name): reorient_template_file_exists = True reorient_template = None if output_directory is None or reorient_template_file_exists == False: reorient_template_file = tempfile.NamedTemporaryFile( suffix=".nii.gz") reorient_template_file.close() template_file_name = reorient_template_file.name template_url = "https://ndownloader.figshare.com/files/22707335" if not os.path.exists(template_file_name): if verbose == True: print("Lung extraction: downloading template.") r = requests.get(template_url) with open(template_file_name, 'wb') as f: f.write(r.content) reorient_template = ants.image_read(template_file_name) if output_directory is not None: shutil.copy(template_file_name, reorient_template_file_name) else: reorient_template = ants.image_read(reorient_template_file_name) resampled_image_size = reorient_template.shape unet_model = create_unet_model_3d( (*resampled_image_size, channel_size), number_of_outputs=number_of_classification_labels, number_of_layers=4, number_of_filters_at_base_layer=8, dropout_rate=0.0, convolution_kernel_size=(3, 3, 3), deconvolution_kernel_size=(2, 2, 2)) unet_model.load_weights(weights_file_name) if verbose == True: print("Lung extraction: normalizing image to the template.") center_of_mass_template = ants.get_center_of_mass(reorient_template * 0 + 1) center_of_mass_image = ants.get_center_of_mass(image * 0 + 1) translation = np.asarray(center_of_mass_image) - np.asarray( center_of_mass_template) xfrm = ants.create_ants_transform( transform_type="Euler3DTransform", center=np.asarray(center_of_mass_template), translation=translation) warped_image = ants.apply_ants_transform_to_image( xfrm, image, reorient_template) batchX = np.expand_dims(warped_image.numpy(), axis=0) batchX = np.expand_dims(batchX, axis=-1) batchX = (batchX - batchX.mean()) / batchX.std() predicted_data = unet_model.predict(batchX, verbose=0) origin = warped_image.origin spacing = warped_image.spacing direction = warped_image.direction probability_images_array = list() for i in range(number_of_classification_labels): probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, i]), origin=origin, spacing=spacing, direction=direction)) if verbose == True: print( "Lung extraction: renormalize probability mask to native space." ) for i in range(number_of_classification_labels): probability_images_array[i] = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_images_array[i], image) image_matrix = ants.image_list_to_matrix(probability_images_array, image * 0 + 1) segmentation_matrix = np.argmax(image_matrix, axis=0) segmentation_image = ants.matrix_to_images( np.expand_dims(segmentation_matrix, axis=0), image * 0 + 1)[0] return_dict = { 'segmentation_image': segmentation_image, 'probability_images': probability_images_array } return (return_dict)
def claustrum_segmentation(t1, do_preprocessing=True, use_ensemble=True, antsxnet_cache_directory=None, verbose=False): """ Claustrum segmentation Described here: https://arxiv.org/abs/2008.03465 with the implementation available at: https://github.com/hongweilibran/claustrum_multi_view Arguments --------- t1 : ANTsImage input 3-D T1 brain image. do_preprocessing : boolean perform n4 bias correction. use_ensemble : boolean check whether to use all 3 sets of weights. antsxnet_cache_directory : string Destination directory for storing the downloaded template and model weights. Since these can be resused, if is None, these data will be downloaded to a ~/.keras/ANTsXNet/. verbose : boolean Print progress to the screen. Returns ------- Claustrum segmentation probability image Example ------- >>> image = ants.image_read("t1.nii.gz") >>> probability_mask = claustrum_segmentation(image) """ from ..architectures import create_sysu_media_unet_model_2d from ..utilities import brain_extraction from ..utilities import get_pretrained_network from ..utilities import preprocess_brain_image from ..utilities import pad_or_crop_image_to_size if t1.dimension != 3: raise ValueError("Image dimension must be 3.") if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" image_size = (180, 180) ################################ # # Preprocess images # ################################ number_of_channels = 1 t1_preprocessed = ants.image_clone(t1) brain_mask = ants.threshold_image(t1, 0, 0, 0, 1) if do_preprocessing == True: t1_preprocessing = preprocess_brain_image( t1, truncate_intensity=(0.01, 0.99), brain_extraction_modality="t1", do_bias_correction=True, do_denoising=True, antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) t1_preprocessed = t1_preprocessing["preprocessed_image"] brain_mask = t1_preprocessing["brain_mask"] reference_image = ants.make_image((170, 256, 256), voxval=1, spacing=(1, 1, 1), origin=(0, 0, 0), direction=np.identity(3)) center_of_mass_reference = ants.get_center_of_mass(reference_image) center_of_mass_image = ants.get_center_of_mass(brain_mask) translation = np.asarray(center_of_mass_image) - np.asarray( center_of_mass_reference) xfrm = ants.create_ants_transform( transform_type="Euler3DTransform", center=np.asarray(center_of_mass_reference), translation=translation) t1_preprocessed_warped = ants.apply_ants_transform_to_image( xfrm, t1_preprocessed, reference_image) brain_mask_warped = ants.threshold_image( ants.apply_ants_transform_to_image(xfrm, brain_mask, reference_image), 0.5, 1.1, 1, 0) ################################ # # Gaussian normalize intensity based on brain mask # ################################ mean_t1 = t1_preprocessed_warped[brain_mask_warped > 0].mean() std_t1 = t1_preprocessed_warped[brain_mask_warped > 0].std() t1_preprocessed_warped = (t1_preprocessed_warped - mean_t1) / std_t1 t1_preprocessed_warped = t1_preprocessed_warped * brain_mask_warped ################################ # # Build models and load weights # ################################ number_of_models = 1 if use_ensemble == True: number_of_models = 3 if verbose == True: print("Claustrum: retrieving axial model weights.") unet_axial_models = list() for i in range(number_of_models): weights_file_name = get_pretrained_network( "claustrum_axial_" + str(i), antsxnet_cache_directory=antsxnet_cache_directory) unet_axial_models.append( create_sysu_media_unet_model_2d((*image_size, number_of_channels), anatomy="claustrum")) unet_axial_models[i].load_weights(weights_file_name) if verbose == True: print("Claustrum: retrieving coronal model weights.") unet_coronal_models = list() for i in range(number_of_models): weights_file_name = get_pretrained_network( "claustrum_coronal_" + str(i), antsxnet_cache_directory=antsxnet_cache_directory) unet_coronal_models.append( create_sysu_media_unet_model_2d((*image_size, number_of_channels), anatomy="claustrum")) unet_coronal_models[i].load_weights(weights_file_name) ################################ # # Extract slices # ################################ dimensions_to_predict = [1, 2] batch_coronal_X = np.zeros( (t1_preprocessed_warped.shape[1], *image_size, number_of_channels)) batch_axial_X = np.zeros( (t1_preprocessed_warped.shape[2], *image_size, number_of_channels)) for d in range(len(dimensions_to_predict)): number_of_slices = t1_preprocessed_warped.shape[ dimensions_to_predict[d]] if verbose == True: print("Extracting slices for dimension ", dimensions_to_predict[d], ".") for i in range(number_of_slices): t1_slice = pad_or_crop_image_to_size( ants.slice_image(t1_preprocessed_warped, dimensions_to_predict[d], i), image_size) if dimensions_to_predict[d] == 1: batch_coronal_X[i, :, :, 0] = np.rot90(t1_slice.numpy(), k=-1) else: batch_axial_X[i, :, :, 0] = np.rot90(t1_slice.numpy()) ################################ # # Do prediction and then restack into the image # ################################ if verbose == True: print("Coronal prediction.") prediction_coronal = unet_coronal_models[0].predict(batch_coronal_X, verbose=verbose) if number_of_models > 1: for i in range(1, number_of_models, 1): prediction_coronal += unet_coronal_models[i].predict( batch_coronal_X, verbose=verbose) prediction_coronal /= number_of_models for i in range(t1_preprocessed_warped.shape[1]): prediction_coronal[i, :, :, 0] = np.rot90( np.squeeze(prediction_coronal[i, :, :, 0])) if verbose == True: print("Axial prediction.") prediction_axial = unet_axial_models[0].predict(batch_axial_X, verbose=verbose) if number_of_models > 1: for i in range(1, number_of_models, 1): prediction_axial += unet_axial_models[i].predict(batch_axial_X, verbose=verbose) prediction_axial /= number_of_models for i in range(t1_preprocessed_warped.shape[2]): prediction_axial[i, :, :, 0] = np.rot90(np.squeeze(prediction_axial[i, :, :, 0]), k=-1) if verbose == True: print("Restack image and transform back to native space.") permutations = list() permutations.append((0, 1, 2)) permutations.append((1, 0, 2)) permutations.append((1, 2, 0)) prediction_image_average = ants.image_clone(t1_preprocessed_warped) * 0 for d in range(len(dimensions_to_predict)): which_batch_slices = range( t1_preprocessed_warped.shape[dimensions_to_predict[d]]) prediction_per_dimension = None if dimensions_to_predict[d] == 1: prediction_per_dimension = prediction_coronal[ which_batch_slices, :, :, :] else: prediction_per_dimension = prediction_axial[ which_batch_slices, :, :, :] prediction_array = np.transpose(np.squeeze(prediction_per_dimension), permutations[dimensions_to_predict[d]]) prediction_image = ants.copy_image_info( t1_preprocessed_warped, pad_or_crop_image_to_size(ants.from_numpy(prediction_array), t1_preprocessed_warped.shape)) prediction_image_average = prediction_image_average + ( prediction_image - prediction_image_average) / (d + 1) probability_image = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), prediction_image_average, t1) * ants.threshold_image(brain_mask, 0.5, 1, 1, 0) return (probability_image)
for i in range(number_of_classification_labels): probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, i]), origin=origin, spacing=spacing, direction=direction)) end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time: ", elapsed_time, " seconds)") print("Renormalize to native space") start_time = time.time() for i in range(number_of_classification_labels): probability_images_array[i] = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_images_array[i], image) end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time: ", elapsed_time, " seconds)") for i in range(1, number_of_classification_labels): print("Writing", classes[i]) start_time = time.time() ants.image_write( probability_images_array[i], output_file_name_prefix + classes[i] + "Probability.nii.gz") end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time: ", elapsed_time, " seconds)") end_time_total = time.time()
def sysu_media_wmh_segmentation(flair, t1=None, use_ensemble=True, antsxnet_cache_directory=None, verbose=False): """ Perform WMH segmentation using the winning submission in the MICCAI 2017 challenge by the sysu_media team using FLAIR or T1/FLAIR. The MICCAI challenge is discussed in https://pubmed.ncbi.nlm.nih.gov/30908194/ with the sysu_media's team entry is discussed in https://pubmed.ncbi.nlm.nih.gov/30125711/ with the original implementation available here: https://github.com/hongweilibran/wmh_ibbmTum The original implementation used global thresholding as a quick brain extraction approach. Due to possible generalization difficulties, we leave such post-processing steps to the user. For brain or white matter masking see functions brain_extraction or deep_atropos, respectively. Arguments --------- flair : ANTsImage input 3-D FLAIR brain image (not skull-stripped). t1 : ANTsImage input 3-D T1 brain image (not skull-stripped). use_ensemble : boolean check whether to use all 3 sets of weights. antsxnet_cache_directory : string Destination directory for storing the downloaded template and model weights. Since these can be resused, if is None, these data will be downloaded to a ~/.keras/ANTsXNet/. verbose : boolean Print progress to the screen. Returns ------- WMH segmentation probability image Example ------- >>> image = ants.image_read("flair.nii.gz") >>> probability_mask = sysu_media_wmh_segmentation(image) """ from ..architectures import create_sysu_media_unet_model_2d from ..utilities import get_pretrained_network from ..utilities import pad_or_crop_image_to_size from ..utilities import preprocess_brain_image from ..utilities import binary_dice_coefficient if flair.dimension != 3: raise ValueError("Image dimension must be 3.") if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" image_size = (200, 200) ################################ # # Preprocess images # ################################ def closest_simplified_direction_matrix(direction): closest = (np.abs(direction) + 0.5).astype(int).astype(float) closest[direction < 0] *= -1.0 return closest simplified_direction = closest_simplified_direction_matrix(flair.direction) flair_preprocessing = preprocess_brain_image( flair, truncate_intensity=None, brain_extraction_modality=None, do_bias_correction=False, do_denoising=False, antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) flair_preprocessed = flair_preprocessing["preprocessed_image"] flair_preprocessed.set_direction(simplified_direction) flair_preprocessed.set_origin((0, 0, 0)) flair_preprocessed.set_spacing((1, 1, 1)) number_of_channels = 1 t1_preprocessed = None if t1 is not None: t1_preprocessing = preprocess_brain_image( t1, truncate_intensity=None, brain_extraction_modality=None, do_bias_correction=False, do_denoising=False, antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) t1_preprocessed = t1_preprocessing["preprocessed_image"] t1_preprocessed.set_direction(simplified_direction) t1_preprocessed.set_origin((0, 0, 0)) t1_preprocessed.set_spacing((1, 1, 1)) number_of_channels = 2 ################################ # # Reorient images # ################################ reference_image = ants.make_image((256, 256, 256), voxval=0, spacing=(1, 1, 1), origin=(0, 0, 0), direction=np.identity(3)) center_of_mass_reference = np.floor( ants.get_center_of_mass(reference_image * 0 + 1)) center_of_mass_image = np.floor( ants.get_center_of_mass(flair_preprocessed)) translation = np.asarray(center_of_mass_image) - np.asarray( center_of_mass_reference) xfrm = ants.create_ants_transform( transform_type="Euler3DTransform", center=np.asarray(center_of_mass_reference), translation=translation) flair_preprocessed_warped = ants.apply_ants_transform_to_image( xfrm, flair_preprocessed, reference_image, interpolation="nearestneighbor") crop_image = ants.image_clone(flair_preprocessed) * 0 + 1 crop_image_warped = ants.apply_ants_transform_to_image( xfrm, crop_image, reference_image, interpolation="nearestneighbor") flair_preprocessed_warped = ants.crop_image(flair_preprocessed_warped, crop_image_warped, 1) if t1 is not None: t1_preprocessed_warped = ants.apply_ants_transform_to_image( xfrm, t1_preprocessed, reference_image, interpolation="nearestneighbor") t1_preprocessed_warped = ants.crop_image(t1_preprocessed_warped, crop_image_warped, 1) ################################ # # Gaussian normalize intensity # ################################ mean_flair = flair_preprocessed.mean() std_flair = flair_preprocessed.std() if number_of_channels == 2: mean_t1 = t1_preprocessed.mean() std_t1 = t1_preprocessed.std() flair_preprocessed_warped = (flair_preprocessed_warped - mean_flair) / std_flair if number_of_channels == 2: t1_preprocessed_warped = (t1_preprocessed_warped - mean_t1) / std_t1 ################################ # # Build models and load weights # ################################ number_of_models = 1 if use_ensemble == True: number_of_models = 3 if verbose == True: print("White matter hyperintensity: retrieving model weights.") unet_models = list() for i in range(number_of_models): if number_of_channels == 1: weights_file_name = get_pretrained_network( "sysuMediaWmhFlairOnlyModel" + str(i), antsxnet_cache_directory=antsxnet_cache_directory) else: weights_file_name = get_pretrained_network( "sysuMediaWmhFlairT1Model" + str(i), antsxnet_cache_directory=antsxnet_cache_directory) unet_model = create_sysu_media_unet_model_2d( (*image_size, number_of_channels)) unet_loss = binary_dice_coefficient(smoothing_factor=1.) unet_model.compile(optimizer=keras.optimizers.Adam(learning_rate=2e-4), loss=unet_loss) unet_model.load_weights(weights_file_name) unet_models.append(unet_model) ################################ # # Extract slices # ################################ dimensions_to_predict = [2] total_number_of_slices = 0 for d in range(len(dimensions_to_predict)): total_number_of_slices += flair_preprocessed_warped.shape[ dimensions_to_predict[d]] batchX = np.zeros( (total_number_of_slices, *image_size, number_of_channels)) slice_count = 0 for d in range(len(dimensions_to_predict)): number_of_slices = flair_preprocessed_warped.shape[ dimensions_to_predict[d]] if verbose == True: print("Extracting slices for dimension ", dimensions_to_predict[d], ".") for i in range(number_of_slices): flair_slice = pad_or_crop_image_to_size( ants.slice_image(flair_preprocessed_warped, dimensions_to_predict[d], i), image_size) batchX[slice_count, :, :, 0] = flair_slice.numpy() if number_of_channels == 2: t1_slice = pad_or_crop_image_to_size( ants.slice_image(t1_preprocessed_warped, dimensions_to_predict[d], i), image_size) batchX[slice_count, :, :, 1] = t1_slice.numpy() slice_count += 1 ################################ # # Do prediction and then restack into the image # ################################ if verbose == True: print("Prediction.") prediction = unet_models[0].predict(np.transpose(batchX, axes=(0, 2, 1, 3)), verbose=verbose) if number_of_models > 1: for i in range(1, number_of_models, 1): prediction += unet_models[i].predict(np.transpose(batchX, axes=(0, 2, 1, 3)), verbose=verbose) prediction /= number_of_models prediction = np.transpose(prediction, axes=(0, 2, 1, 3)) permutations = list() permutations.append((0, 1, 2)) permutations.append((1, 0, 2)) permutations.append((1, 2, 0)) prediction_image_average = ants.image_clone(flair_preprocessed_warped) * 0 current_start_slice = 0 for d in range(len(dimensions_to_predict)): current_end_slice = current_start_slice + flair_preprocessed_warped.shape[ dimensions_to_predict[d]] which_batch_slices = range(current_start_slice, current_end_slice) prediction_per_dimension = prediction[which_batch_slices, :, :, :] prediction_array = np.transpose(np.squeeze(prediction_per_dimension), permutations[dimensions_to_predict[d]]) prediction_image = ants.copy_image_info( flair_preprocessed_warped, pad_or_crop_image_to_size(ants.from_numpy(prediction_array), flair_preprocessed_warped.shape)) prediction_image_average = prediction_image_average + ( prediction_image - prediction_image_average) / (d + 1) current_start_slice = current_end_slice probability_image = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), prediction_image_average, flair_preprocessed) probability_image = ants.copy_image_info(flair, probability_image) return (probability_image)
def data_augmentation(input_image_list, segmentation_image_list=None, pointset_list=None, number_of_simulations=10, reference_image=None, transform_type='affineAndDeformation', noise_model='additivegaussian', noise_parameters=(0.0, 0.05), sd_simulated_bias_field=0.05, sd_histogram_warping=0.05, sd_affine=0.05, output_numpy_file_prefix=None, verbose=False): """ Randomly transform image data. Given an input image list (possibly multi-modal) and an optional corresponding segmentation image list, this function will perform data augmentation with the following augmentation possibilities: * spatial transformations * added image noise * simulated bias field * histogram warping Arguments --------- input_image_list : list of lists of ANTsImages List of lists of input images to warp. The internal list sets contain one or more images (per subject) which are assumed to be mutually aligned. The outer list contains multiple subject lists which are randomly sampled to produce output image list. segmentation_image_list : list of ANTsImages List of segmentation images corresponding to the input image list (optional). pointset_list: list of pointsets Numpy arrays corresponding to the input image list (optional). If using this option, the transform_type must be invertible. number_of_simulations : integer Number of simulated output image sets. Default = 10. reference_image : ANTsImage Defines the spatial domain for all output images. If one is not specified, we used the first image in the input image list. transform_type : string One of the following options: "translation", "rigid", "scaleShear", "affine", "deformation", "affineAndDeformation". noise_model : string 'additivegaussian', 'saltandpepper', 'shot', or 'speckle'. noise_parameters : tuple or array or float 'additivegaussian': (mean, standardDeviation) 'saltandpepper': (probability, saltValue, pepperValue) 'shot': scale 'speckle': standardDeviation Note that the standard deviation, scale, and probability values are *max* values and are randomly selected in the range [0, noise_parameter]. Also, the "mean", "saltValue" and "pepperValue" are assumed to be in the intensity normalized range of [0, 1]. sd_simulated_bias_field : float Characterize the standard deviation of the amplitude. sd_histogram_warping : float Determines the strength of the bias field. sd_affine : float Determines the amount of transformation based change. output_numpy_file_prefix : string Filename of output numpy array containing all the simulated images and segmentations. Returns ------- list of lists of transformed images and/or outputs to a numpy array. Example ------- >>> image1_list = list() >>> image1_list.append(ants.image_read(ants.get_ants_data("r16"))) >>> image2_list = list() >>> image2_list.append(ants.image_read(ants.get_ants_data("r64"))) >>> segmentation1 = ants.threshold_image(image1_list[0], "Otsu", 3) >>> segmentation2 = ants.threshold_image(image2_list[0], "Otsu", 3) >>> input_segmentations = list() >>> input_segmentations.append(segmentation1) >>> input_segmentations.append(segmentation2) >>> points1 = ants.get_centroids(segmentation1)[:,0:2] >>> points2 = ants.get_centroids(segmentation2)[:,0:2] >>> input_points = list() >>> input_points.append(points1) >>> input_points.append(points2) >>> input_images = list() >>> input_images.append(image1_list) >>> input_images.append(image2_list) >>> data = data_augmentation(input_images, input_segmentations, input_points, tranform_type="scaleShear") """ from ..utilities import histogram_warp_image_intensities from ..utilities import simulate_bias_field from ..utilities import randomly_transform_image_data if reference_image is None: reference_image = input_image_list[0][0] number_of_modalities = len(input_image_list[0]) # Set up numpy arrays if outputing to file. batch_X = None batch_Y = None batch_Y_points = None number_of_points = 0 if pointset_list is not None: number_of_points = pointset_list[0].shape[0] batch_Y_points = np.zeros((number_of_simulations, number_of_points, reference_image.dimension)) if output_numpy_file_prefix is not None: batch_X = np.zeros((number_of_simulations, *reference_image.shape, number_of_modalities)) if segmentation_image_list is not None: batch_Y = np.zeros((number_of_simulations, *reference_image.shape)) # Spatially transform input image data if verbose: print("Randomly spatially transforming the image data.") transform_augmentation = randomly_transform_image_data( reference_image, input_image_list=input_image_list, segmentation_image_list=segmentation_image_list, number_of_simulations=number_of_simulations, transform_type=transform_type, sd_affine=sd_affine, deformation_transform_type="bspline", number_of_random_points=1000, sd_noise=2.0, number_of_fitting_levels=4, mesh_size=1, sd_smoothing=4.0, input_image_interpolator='linear', segmentation_image_interpolator='nearestNeighbor') simulated_image_list = list() simulated_segmentation_image_list = list() simulated_pointset_list = list() for i in range(number_of_simulations): if verbose: print("Processing simulation " + str(i)) segmentation = None if segmentation_image_list is not None: segmentation = transform_augmentation[ 'simulated_segmentation_images'][i] simulated_segmentation_image_list.append(segmentation) if batch_Y is not None: if reference_image.dimension == 2: batch_Y[i, :, :] = segmentation.numpy() else: batch_Y[i, :, :, :] = segmentation.numpy() if pointset_list is not None: simulated_transform = transform_augmentation[ 'simulated_transforms'][i] simulated_transform_inverse = ants.invert_ants_transform( simulated_transform) which_subject = transform_augmentation['which_subject'][i] simulated_points = np.zeros( (number_of_points, reference_image.dimension)) for j in range(number_of_points): simulated_points[j, :] = ants.apply_ants_transform_to_point( simulated_transform_inverse, pointset_list[which_subject][j, :]) simulated_pointset_list.append(simulated_points) if batch_Y_points is not None: batch_Y_points[i, :, :] = simulated_points simulated_local_image_list = list() for j in range(number_of_modalities): if verbose: print(" Modality " + str(j)) image = transform_augmentation['simulated_images'][i][j] image_range = image.range() # Normalize to [0, 1] before applying augmentation if verbose: print(" Normalizing to [0, 1].") image = ants.iMath(image, "Normalize") # Noise if noise_model is not None: if verbose: print(" Adding noise (" + noise_model + ").") if any(np.array(noise_parameters) > 0): if noise_model.lower() == "additivegaussian": parameters = (noise_parameters[0], random.uniform(0.0, noise_parameters[1])) image = ants.add_noise_to_image( image, noise_model="additivegaussian", noise_parameters=parameters) elif noise_model.lower() == "saltandpepper": parameters = (random.uniform(0.0, noise_parameters[0]), noise_parameters[1], noise_parameters[2]) image = ants.add_noise_to_image( image, noise_model="saltandpepper", noise_parameters=parameters) elif noise_model.lower() == "shot": parameters = (random.uniform(0.0, noise_parameters[0])) image = ants.add_noise_to_image( image, noise_model="shot", noise_parameters=parameters) elif noise_model.lower() == "speckle": parameters = (random.uniform(0.0, noise_parameters[0])) image = ants.add_noise_to_image( image, noise_model="speckle", noise_parameters=parameters) else: raise ValueError("Unrecognized noise model.") # Simulated bias field if sd_simulated_bias_field > 0: if verbose: print(" Adding simulated bias field.") bias_field = simulate_bias_field( image, sd_bias_field=sd_simulated_bias_field) image = image * (bias_field + 1) # Histogram intensity warping if sd_histogram_warping > 0: if verbose: print(" Performing intensity histogram warping.") break_points = [0.2, 0.4, 0.6, 0.8] displacements = list() for b in range(len(break_points)): displacements.append(random.gauss(0, sd_histogram_warping)) image = histogram_warp_image_intensities( image, break_points=break_points, clamp_end_points=(False, False), displacements=displacements) # Rescale to original intensity range if verbose: print(" Rescaling to original intensity range.") image = ants.iMath(image, "Normalize") * ( image_range[1] - image_range[0]) + image_range[0] simulated_local_image_list.append(image) if batch_X is not None: if reference_image.dimension == 2: batch_X[i, :, :, j] = image.numpy() else: batch_X[i, :, :, :, j] = image.numpy() simulated_image_list.append(simulated_local_image_list) if batch_X is not None: if output_numpy_file_prefix is not None: if verbose: print("Writing images to numpy array.") np.save(output_numpy_file_prefix + "SimulatedImages.npy", batch_X) if batch_Y is not None: if output_numpy_file_prefix is not None: if verbose: print("Writing segmentation images to numpy array.") np.save( output_numpy_file_prefix + "SimulatedSegmentationImages.npy", batch_Y) if batch_Y_points is not None: if output_numpy_file_prefix is not None: if verbose: print("Writing segmentation images to numpy array.") np.save(output_numpy_file_prefix + "SimulatedPointsets.npy", batch_Y_points) if segmentation_image_list is None and pointset_list is None: return ({'simulated_images': simulated_image_list}) elif segmentation_image_list is None: return ({ 'simulated_images': simulated_image_list, 'simulated_pointset_list': simulated_pointset_list }) elif pointset_list is None: return ({ 'simulated_images': simulated_image_list, 'simulated_segmentation_images': simulated_segmentation_image_list }) else: return ({ 'simulated_images': simulated_image_list, 'simulated_segmentation_images': simulated_segmentation_image_list, 'simulated_pointset_list': simulated_pointset_list })
start_time = time.time() zeros = np.zeros(warped_image.shape) zeros_image = ants.from_numpy(zeros, origin=warped_image.origin, spacing=warped_image.spacing, direction=warped_image.direction) for i in range(number_of_classification_labels): probability_image = ants.resample_image(probability_images_array[i], original_cropped_size, use_voxels=True, interp_type=0) probability_image = ants.decrop_image(probability_image, zeros_image) probability_images_array[i] = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_image, image) end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time: ", elapsed_time, " seconds)") for i in range(1, number_of_classification_labels): print("Writing", classes[i]) start_time = time.time() ants.image_write( probability_images_array[i], output_file_name_prefix + classes[i] + "Segmentation.nii.gz") end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time: ", elapsed_time, " seconds)")
def brain_extraction(image, modality="t1", antsxnet_cache_directory=None, verbose=False): """ Perform brain extraction using U-net and ANTs-based training data. "NoBrainer" is also possible where brain extraction uses U-net and FreeSurfer training data ported from the https://github.com/neuronets/nobrainer-models Arguments --------- image : ANTsImage input image (or list of images for multi-modal scenarios). modality : string Modality image type. Options include: * "t1": T1-weighted MRI---ANTs-trained. Update from "t1v0". * "t1v0": T1-weighted MRI---ANTs-trained. * "t1nobrainer": T1-weighted MRI---FreeSurfer-trained: h/t Satra Ghosh and Jakub Kaczmarzyk. * "t1combined": Brian's combination of "t1" and "t1nobrainer". One can also specify "t1combined[X]" where X is the morphological radius. X = 12 by default. * "flair": FLAIR MRI. * "t2": T2 MRI. * "bold": 3-D BOLD MRI. * "fa": Fractional anisotropy. * "t1t2infant": Combined T1-w/T2-w infant MRI h/t Martin Styner. * "t1infant": T1-w infant MRI h/t Martin Styner. * "t2infant": T2-w infant MRI h/t Martin Styner. antsxnet_cache_directory : string Destination directory for storing the downloaded template and model weights. Since these can be resused, if is None, these data will be downloaded to a ~/.keras/ANTsXNet/. verbose : boolean Print progress to the screen. Returns ------- ANTs probability brain mask image. Example ------- >>> probability_brain_mask = brain_extraction(brain_image, modality="t1") """ from ..architectures import create_unet_model_3d from ..utilities import get_pretrained_network from ..utilities import get_antsxnet_data from ..architectures import create_nobrainer_unet_model_3d classes = ("background", "brain") number_of_classification_labels = len(classes) channel_size = 1 if isinstance(image, list): channel_size = len(image) if antsxnet_cache_directory == None: antsxnet_cache_directory = "ANTsXNet" input_images = list() if channel_size == 1: input_images.append(image) else: input_images = image if input_images[0].dimension != 3: raise ValueError("Image dimension must be 3.") if "t1combined" in modality: brain_extraction_t1 = brain_extraction( image, modality="t1", antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) brain_mask = ants.iMath_get_largest_component( ants.threshold_image(brain_extraction_t1, 0.5, 10000)) # Need to change with voxel resolution morphological_radius = 12 if '[' in modality and ']' in modality: morphological_radius = int(modality.split("[")[1].split("]")[0]) brain_extraction_t1nobrainer = brain_extraction( image * ants.iMath_MD(brain_mask, radius=morphological_radius), modality="t1nobrainer", antsxnet_cache_directory=antsxnet_cache_directory, verbose=verbose) brain_extraction_combined = ants.iMath_fill_holes( ants.iMath_get_largest_component(brain_extraction_t1nobrainer * brain_mask)) brain_extraction_combined = brain_extraction_combined + ants.iMath_ME( brain_mask, morphological_radius) + brain_mask return (brain_extraction_combined) if modality != "t1nobrainer": ##################### # # ANTs-based # ##################### weights_file_name_prefix = None if modality == "t1v0": weights_file_name_prefix = "brainExtraction" elif modality == "t1": weights_file_name_prefix = "brainExtractionT1" elif modality == "t2": weights_file_name_prefix = "brainExtractionT2" elif modality == "flair": weights_file_name_prefix = "brainExtractionFLAIR" elif modality == "bold": weights_file_name_prefix = "brainExtractionBOLD" elif modality == "fa": weights_file_name_prefix = "brainExtractionFA" elif modality == "t1t2infant": weights_file_name_prefix = "brainExtractionInfantT1T2" elif modality == "t1infant": weights_file_name_prefix = "brainExtractionInfantT1" elif modality == "t2infant": weights_file_name_prefix = "brainExtractionInfantT2" else: raise ValueError("Unknown modality type.") weights_file_name = get_pretrained_network( weights_file_name_prefix, antsxnet_cache_directory=antsxnet_cache_directory) if verbose == True: print("Brain extraction: retrieving template.") reorient_template_file_name_path = get_antsxnet_data( "S_template3", antsxnet_cache_directory=antsxnet_cache_directory) reorient_template = ants.image_read(reorient_template_file_name_path) resampled_image_size = reorient_template.shape if modality == "t1": classes = ("background", "head", "brain") number_of_classification_labels = len(classes) unet_model = create_unet_model_3d( (*resampled_image_size, channel_size), number_of_outputs=number_of_classification_labels, number_of_layers=4, number_of_filters_at_base_layer=8, dropout_rate=0.0, convolution_kernel_size=(3, 3, 3), deconvolution_kernel_size=(2, 2, 2), weight_decay=1e-5) unet_model.load_weights(weights_file_name) if verbose == True: print("Brain extraction: normalizing image to the template.") center_of_mass_template = ants.get_center_of_mass(reorient_template) center_of_mass_image = ants.get_center_of_mass(input_images[0]) translation = np.asarray(center_of_mass_image) - np.asarray( center_of_mass_template) xfrm = ants.create_ants_transform( transform_type="Euler3DTransform", center=np.asarray(center_of_mass_template), translation=translation) batchX = np.zeros((1, *resampled_image_size, channel_size)) for i in range(len(input_images)): warped_image = ants.apply_ants_transform_to_image( xfrm, input_images[i], reorient_template) warped_array = warped_image.numpy() batchX[0, :, :, :, i] = (warped_array - warped_array.mean()) / warped_array.std() if verbose == True: print("Brain extraction: prediction and decoding.") predicted_data = unet_model.predict(batchX, verbose=verbose) origin = reorient_template.origin spacing = reorient_template.spacing direction = reorient_template.direction probability_images_array = list() probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, 0]), origin=origin, spacing=spacing, direction=direction)) probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, 1]), origin=origin, spacing=spacing, direction=direction)) if modality == "t1": probability_images_array.append( ants.from_numpy(np.squeeze(predicted_data[0, :, :, :, 2]), origin=origin, spacing=spacing, direction=direction)) if verbose == True: print( "Brain extraction: renormalize probability mask to native space." ) probability_image = ants.apply_ants_transform_to_image( ants.invert_ants_transform(xfrm), probability_images_array[number_of_classification_labels - 1], input_images[0]) return (probability_image) else: ##################### # # NoBrainer # ##################### if verbose == True: print("NoBrainer: generating network.") model = create_nobrainer_unet_model_3d((None, None, None, 1)) weights_file_name = get_pretrained_network( "brainExtractionNoBrainer", antsxnet_cache_directory=antsxnet_cache_directory) model.load_weights(weights_file_name) if verbose == True: print( "NoBrainer: preprocessing (intensity truncation and resampling)." ) image_array = image.numpy() image_robust_range = np.quantile( image_array[np.where(image_array != 0)], (0.02, 0.98)) threshold_value = 0.10 * (image_robust_range[1] - image_robust_range[0] ) + image_robust_range[0] thresholded_mask = ants.threshold_image(image, -10000, threshold_value, 0, 1) thresholded_image = image * thresholded_mask image_resampled = ants.resample_image(thresholded_image, (256, 256, 256), use_voxels=True) image_array = np.expand_dims(image_resampled.numpy(), axis=0) image_array = np.expand_dims(image_array, axis=-1) if verbose == True: print("NoBrainer: predicting mask.") brain_mask_array = np.squeeze( model.predict(image_array, verbose=verbose)) brain_mask_resampled = ants.copy_image_info( image_resampled, ants.from_numpy(brain_mask_array)) brain_mask_image = ants.resample_image(brain_mask_resampled, image.shape, use_voxels=True, interp_type=1) spacing = ants.get_spacing(image) spacing_product = spacing[0] * spacing[1] * spacing[2] minimum_brain_volume = round(649933.7 / spacing_product) brain_mask_labeled = ants.label_clusters(brain_mask_image, minimum_brain_volume) return (brain_mask_labeled)