image_mods = ["Proton"] channel_size = len(image_mods) print("Reading reorientation template " + reorient_template_file_name) start_time = time.time() reorient_template = ants.image_read(reorient_template_file_name) end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time: ", elapsed_time, " seconds)") resampled_image_size = reorient_template.shape unet_model = antspynet.create_unet_model_3d( (*resampled_image_size, channel_size), number_of_outputs=number_of_classification_labels, number_of_layers=4, number_of_filters_at_base_layer=16, dropout_rate=0.0, convolution_kernel_size=(7, 7, 5), deconvolution_kernel_size=(7, 7, 5)) print("Loading weights file") start_time = time.time() weights_file_name = "./lungSegmentationWeights.h5" if not os.path.exists(weights_file_name): weights_file_name = antspynet.get_pretrained_network( "protonLungMri", weights_file_name) unet_model.load_weights(weights_file_name) end_time = time.time() elapsed_time = end_time - start_time
image_mods = ["T1"] channel_size = len(image_mods) print("Reading reorientation template " + reorient_template_file_name) start_time = time.time() reorient_template = ants.image_read(reorient_template_file_name) end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time: ", elapsed_time, " seconds)") resampled_image_size = reorient_template.shape unet_model = antspynet.create_unet_model_3d( (*resampled_image_size, channel_size), number_of_outputs = number_of_classification_labels, number_of_layers = 4, number_of_filters_at_base_layer = 8, dropout_rate = 0.0, convolution_kernel_size = (3, 3, 3), deconvolution_kernel_size = (2, 2, 2), weight_decay = 1e-5 ) print( "Loading weights file" ) start_time = time.time() weights_file_name = "./brainExtractionWeights.h5" if not os.path.exists(weights_file_name): weights_file_name = antspynet.get_pretrained_network("brainExtraction", weights_file_name) unet_model.load_weights(weights_file_name) end_time = time.time() elapsed_time = end_time - start_time print(" (elapsed time: ", elapsed_time, " seconds)")