예제 #1
0
    def parabolic_solve(self, u_in, b, a = None, u_out = None, update_matrix=True, \
                       imax=10000, tol=1.0e-8, atol=1.0e-8,
                       iprint=None, output_stats=False):
        """
        Solve for u in the equation

        ( I + dt div a grad ) u = b

        u | boundary = g


        u_in, u_out, f anf g are Quantity objects

        Dirichlet BC g encoded into u_in boundary_values

        Initial guess for iterative scheme is given by
        centroid values of u_in

        Centroid values of a and b provide diffusivity and rhs

        Solution u is retruned in u_out

        """

        if u_out is None:
            u_out = Quantity(self.domain)

        if update_matrix:
            self.update_elliptic_matrix(a)

        self.update_elliptic_boundary_term(u_in)

        self.set_parabolic_solve(True)

        # Pull out arrays and a matrix operator
        IdtA = self
        rhs = b.centroid_values + (self.dt * self.boundary_term)
        x0 = u_in.centroid_values

        x, stats = conjugate_gradient(IdtA,
                                      rhs,
                                      x0,
                                      imax=imax,
                                      tol=tol,
                                      atol=atol,
                                      iprint=iprint,
                                      output_stats=True)

        self.set_parabolic_solve(False)

        u_out.set_values(x, location='centroids')
        u_out.set_boundary_values(u_in.boundary_values)

        if output_stats:
            return u_out, stats
        else:
            return u_out
    def parabolic_solve(self, u_in, b, a = None, u_out = None, update_matrix=True, \
                       imax=10000, tol=1.0e-8, atol=1.0e-8,
                       iprint=None, output_stats=False):
        """
        Solve for u in the equation

        ( I + dt div a grad ) u = b

        u | boundary = g


        u_in, u_out, f anf g are Quantity objects

        Dirichlet BC g encoded into u_in boundary_values

        Initial guess for iterative scheme is given by
        centroid values of u_in

        Centroid values of a and b provide diffusivity and rhs

        Solution u is retruned in u_out

        """

        if u_out is None:
            u_out = Quantity(self.domain)

        if update_matrix :
            self.update_elliptic_matrix(a)

        self.update_elliptic_boundary_term(u_in)

        self.set_parabolic_solve(True)


        # Pull out arrays and a matrix operator
        IdtA = self
        rhs = b.centroid_values + (self.dt * self.boundary_term)
        x0 = u_in.centroid_values

        x, stats = conjugate_gradient(IdtA,rhs,x0,imax=imax, tol=tol, atol=atol,
                                      iprint=iprint, output_stats=True)

        self.set_parabolic_solve(False)

        u_out.set_values(x, location='centroids')
        u_out.set_boundary_values(u_in.boundary_values)

        if output_stats:
            return u_out, stats
        else:
            return u_out
예제 #3
0
    def fit(self,
            point_coordinates_or_filename=None,
            z=None,
            verbose=False,
            point_origin=None,
            attribute_name=None,
            max_read_lines=1e7):
        """Fit a smooth surface to given 1d array of data points z.

        The smooth surface is computed at each vertex in the underlying
        mesh using the formula given in the module doc string.

        Inputs:
        point_coordinates_or_filename: The co-ordinates of the data points.
              A filename of a .pts file or a
              List of coordinate pairs [x, y] of
              data points or an nx2 numeric array or a Geospatial_data object
              or points file filename
          z: Single 1d vector or array of data at the point_coordinates.

        """
        if isinstance(point_coordinates_or_filename, basestring):
            if point_coordinates_or_filename[-4:] != ".pts":
                use_blocking_option2 = False

        # NOTE PADARN 29/03/13: File reading from C has been removed. Now
        # the input is either a set of points, or a filename which is then
        # handled by the Geospatial_data object

        if verbose:
            print 'Fit.fit: Initializing'

        # Use blocking to load in the point info
        if isinstance(point_coordinates_or_filename, basestring):
            msg = "Don't set a point origin when reading from a file"
            assert point_origin is None, msg
            filename = point_coordinates_or_filename

            G_data = Geospatial_data(filename,
                                     max_read_lines=max_read_lines,
                                     load_file_now=False,
                                     verbose=verbose)

            for i, geo_block in enumerate(G_data):

                # Build the array
                points = geo_block.get_data_points(absolute=True)
                z = geo_block.get_attributes(attribute_name=attribute_name)

                self._build_matrix_AtA_Atz(points, z, attribute_name, verbose)

            point_coordinates = None

            if verbose:
                print ''
        else:
            point_coordinates = point_coordinates_or_filename

        # This condition either means a filename was read or the function
        # recieved a None as input
        if point_coordinates is None:
            if verbose:
                log.critical('Fit.fit: Warning: no data points in fit')
            msg = 'No interpolation matrix.'
            assert self.AtA is not None, msg
            assert self.Atz is not None

        else:
            point_coordinates = ensure_absolute(point_coordinates,
                                                geo_reference=point_origin)
            # if isinstance(point_coordinates,Geospatial_data) and z is None:
            # z will come from the geo-ref

            self._build_matrix_AtA_Atz(point_coordinates,
                                       z,
                                       verbose=verbose,
                                       output='counter')

        # Check sanity
        m = self.mesh.number_of_nodes  # Nbr of basis functions (1/vertex)
        n = self.point_count
        if n < m and self.alpha == 0.0:
            msg = 'ERROR (least_squares): Too few data points\n'
            msg += 'There are only %d data points and alpha == 0. ' % n
            msg += 'Need at least %d\n' % m
            msg += 'Alternatively, set smoothing parameter alpha to a small '
            msg += 'positive value,\ne.g. 1.0e-3.'
            raise TooFewPointsError(msg)

        self._build_coefficient_matrix_B(verbose)
        loners = self.mesh.get_lone_vertices()
        # FIXME  - make this as error message.
        # test with
        # Not_yet_test_smooth_att_to_mesh_with_excess_verts.
        if len(loners) > 0:
            msg = 'WARNING: (least_squares): \nVertices with no triangles\n'
            msg += 'All vertices should be part of a triangle.\n'
            msg += 'In the future this will be inforced.\n'
            msg += 'The following vertices are not part of a triangle;\n'
            msg += str(loners)
            log.critical(msg)

            #raise VertsWithNoTrianglesError(msg)
        return conjugate_gradient(self.B,
                                  self.Atz,
                                  self.Atz,
                                  imax=2 * len(self.Atz) + 1000,
                                  use_c_cg=self.use_c_cg,
                                  precon=self.cg_precon)
예제 #4
0
    def fit(self, point_coordinates_or_filename=None, z=None,
            verbose=False,
            point_origin=None,
            attribute_name=None,
            max_read_lines=1e7):
        """Fit a smooth surface to given 1d array of data points z.

        The smooth surface is computed at each vertex in the underlying
        mesh using the formula given in the module doc string.

        Inputs:
        point_coordinates_or_filename: The co-ordinates of the data points.
              A filename of a .pts file or a
              List of coordinate pairs [x, y] of
              data points or an nx2 numeric array or a Geospatial_data object
              or points file filename
          z: Single 1d vector or array of data at the point_coordinates.

        """
        if isinstance(point_coordinates_or_filename, basestring):
            if point_coordinates_or_filename[-4:] != ".pts":
                use_blocking_option2 = False

        # NOTE PADARN 29/03/13: File reading from C has been removed. Now 
        # the input is either a set of points, or a filename which is then
        # handled by the Geospatial_data object

        if verbose:
            print 'Fit.fit: Initializing'

        # Use blocking to load in the point info
        if isinstance(point_coordinates_or_filename, basestring):
            msg = "Don't set a point origin when reading from a file"
            assert point_origin is None, msg
            filename = point_coordinates_or_filename

            G_data = Geospatial_data(filename,
                                     max_read_lines=max_read_lines,
                                     load_file_now=False,
                                     verbose=verbose)

            for i, geo_block in enumerate(G_data):

               # Build the array
                points = geo_block.get_data_points(absolute=True)
                z = geo_block.get_attributes(attribute_name=attribute_name)

                self._build_matrix_AtA_Atz(points, z, attribute_name, verbose)

            point_coordinates = None

            if verbose:
                print ''
        else:
            point_coordinates = point_coordinates_or_filename


        # This condition either means a filename was read or the function
        # recieved a None as input
        if point_coordinates is None:
            if verbose:
                log.critical('Fit.fit: Warning: no data points in fit')
            msg = 'No interpolation matrix.'
            assert self.AtA is not None, msg
            assert self.Atz is not None


        else:
            point_coordinates = ensure_absolute(point_coordinates,
                                                geo_reference=point_origin)
            # if isinstance(point_coordinates,Geospatial_data) and z is None:
            # z will come from the geo-ref

            self._build_matrix_AtA_Atz(point_coordinates, z, verbose=verbose, output='counter')

        # Check sanity
        m = self.mesh.number_of_nodes  # Nbr of basis functions (1/vertex)
        n = self.point_count
        if n < m and self.alpha == 0.0:
            msg = 'ERROR (least_squares): Too few data points\n'
            msg += 'There are only %d data points and alpha == 0. ' % n
            msg += 'Need at least %d\n' % m
            msg += 'Alternatively, set smoothing parameter alpha to a small '
            msg += 'positive value,\ne.g. 1.0e-3.'
            raise TooFewPointsError(msg)

        self._build_coefficient_matrix_B(verbose)
        loners = self.mesh.get_lone_vertices()
        # FIXME  - make this as error message.
        # test with
        # Not_yet_test_smooth_att_to_mesh_with_excess_verts.
        if len(loners) > 0:
            msg = 'WARNING: (least_squares): \nVertices with no triangles\n'
            msg += 'All vertices should be part of a triangle.\n'
            msg += 'In the future this will be inforced.\n'
            msg += 'The following vertices are not part of a triangle;\n'
            msg += str(loners)
            log.critical(msg)

            #raise VertsWithNoTrianglesError(msg)
        return conjugate_gradient(self.B, self.Atz, self.Atz,
                                  imax=2 * len(self.Atz)+1000, use_c_cg=self.use_c_cg,
                                  precon=self.cg_precon)