def dataset_to_xt_data(dataset, crop_roi): """Convert dataset to x_data and t_data""" x_data = [] for raw_path in dataset.filenames: raw = im_preprocess(imread(raw_path)) if crop_roi: mask_path = raw_to_mask_path(raw_path) roi = mask_to_roi(im_preprocess(imread(mask_path))) raw = raw[roi[0]:roi[2], roi[1]:roi[3]] raw = resize(raw, (128, 128), preserve_range=True) x_data.append(im_to_blob(raw)) x_data = np.array(x_data, dtype=np.float32) t_data = dataset.target.astype(np.int32) return x_data, t_data
def setUp(self): self.model = CAEPool() self.optimizer = O.Adam() self.optimizer.setup(self.model) img = doll() x_data = np.array([im_to_blob(im_preprocess(img))]) self.x = Variable(x_data)
def setUp(self): cae_ones_h5 = os.path.join(here, 'data/cae_ones.h5') vgg_h5 = os.path.join(here, 'data/vgg.h5') self.model = CAEOnesRoiVGG( initial_roi=[100, 100, 300, 300], cae_ones_h5=cae_ones_h5, vgg_h5=vgg_h5) self.optimizer = O.Adam() self.optimizer.setup(self.model) img = doll() x_data = np.array([im_to_blob(im_preprocess(img))]) self.x = Variable(x_data) t_data = np.array([0], dtype=np.int32) self.t = Variable(t_data)