def main(): parser = argparse.ArgumentParser() parser.add_argument('raw_path') parser.add_argument('model_path') args = parser.parse_args() raw_path = args.raw_path model_path = args.model_path mask_path = raw_to_mask_path(raw_path) raw = imread(raw_path) mask = imread(mask_path) y_min, x_min, y_max, x_max = mask_to_roi(mask) im = raw[y_min:y_max, x_min:x_max] model = VGG_mini_ABN() serializers.load_hdf5(model_path, model) im = resize(im, (128, 128), preserve_range=True) x_data = np.array([im_to_blob(im)], dtype=np.float32) x = Variable(x_data, volatile=True) model.train = False y = model(x) y_data = y.data print(OBJECT_CLASSES[np.argmax(y_data[0])])
def dataset_to_xt_data(dataset, crop_roi): """Convert dataset to x_data and t_data""" x_data = [] for raw_path in dataset.filenames: raw = im_preprocess(imread(raw_path)) if crop_roi: mask_path = raw_to_mask_path(raw_path) roi = mask_to_roi(im_preprocess(imread(mask_path))) raw = raw[roi[0]:roi[2], roi[1]:roi[3]] raw = resize(raw, (128, 128), preserve_range=True) x_data.append(im_to_blob(raw)) x_data = np.array(x_data, dtype=np.float32) t_data = dataset.target.astype(np.int32) return x_data, t_data
def test_mask_to_roi(): mask = doll_mask() roi = apc_od.mask_to_roi(mask) assert_tuple_equal(roi, (208, 216, 264, 392))