예제 #1
0
    def test_fuzz(self):
        input_size_pairs = (
            (7777*77, 555*555),
            (777, 555),
            (555, 2048*32+1),
            (2048*32+1, 555),
            (555, 2048*32),
            (2048*32, 555),
            (33333, 555),
            (555, 33333))
        appliers = (
            MultiTensorApply(2048*32),
            MultiTensorApply(333),
            MultiTensorApply(33333))
        repeat_tensors = (
            1,
            55)

        for sizea, sizeb in input_size_pairs:
          for applier in appliers:
            for repeat in repeat_tensors:
              for x_type in (torch.float32, torch.float16):
                for y_type in (torch.float32, torch.float16):
                  for out_type in (torch.float32, torch.float16):
                    for inplace in (True, False):
                      if inplace is True and (y_type is not out_type):
                        continue
                      else:
                        self.axpby(sizea, sizeb, applier, repeat,
                                   x_type, y_type, out_type, inplace=inplace)
예제 #2
0
    def test_fuzz_nhwc(self):
        input_size_pairs = (((7, 77, 7, 77), (5, 55, 5, 55)), ((1, 1, 777, 1),
                                                               (1, 1, 555, 1)),
                            ((5, 47, 5, 55), (1, 1, 1, 2048 * 32 + 1)),
                            ((1, 1, 1, 2048 * 32 + 1), (55, 47, 5, 55)),
                            ((555, 1, 1, 1), (32, 8, 32, 8)),
                            ((32, 8, 32, 8), (55, 47, 5, 55)),
                            ((1, 1, 33333, 1),
                             (55, 47, 55, 5)), ((55, 47, 55, 5), (1, 1, 33333,
                                                                  1)))
        appliers = (MultiTensorApply(2048 * 32), MultiTensorApply(333),
                    MultiTensorApply(33333))
        repeat_tensors = (1, 55)

        for sizea, sizeb in input_size_pairs:
            for applier in appliers:
                for repeat in repeat_tensors:
                    for x_type in (torch.float32, torch.float16):
                        for y_type in (torch.float32, torch.float16):
                            for out_type in (torch.float32, torch.float16):
                                for inplace in (True, False):
                                    if inplace is True and (y_type
                                                            is not out_type):
                                        continue
                                    else:
                                        self.axpby(sizea,
                                                   sizeb,
                                                   applier,
                                                   repeat,
                                                   x_type,
                                                   y_type,
                                                   out_type,
                                                   inplace=inplace,
                                                   nhwc=True)
예제 #3
0
    def test_fuzz(self):
        input_size_pairs = (
            (7777*77, 555*555),
            (777, 555),
            (555, 2048*32+1),
            (2048*32+1, 555),
            (555, 2048*32),
            (2048*32, 555),
            (33333, 555),
            (555, 33333))
        appliers = (
            MultiTensorApply(2048*32), 
            MultiTensorApply(333),
            MultiTensorApply(33333))
        repeat_tensors = (
            1,
            55)

        for sizea, sizeb in input_size_pairs:
          for applier in appliers:
            for repeat in repeat_tensors:
              for in_type in (torch.float32, torch.float16):
                for out_type in (torch.float32, torch.float16):
                  for inplace in (True, False):
                    if inplace is True and (out_type is not in_type):
                      continue
                    else:
                      self.downscale(sizea, sizeb, applier, repeat, in_type, out_type, inplace=inplace)
                      self.find_inf(sizea, sizeb, applier, repeat, in_type, out_type,
                                    0, 0, float('nan'), inplace=inplace)
                      self.find_inf(sizea, sizeb, applier, repeat, in_type, out_type,
                                    2*repeat-1, sizeb-1, float('inf'), inplace=inplace)
                      self.find_inf(sizea, sizeb, applier, repeat, in_type, out_type,
                                   2*(repeat//2), sizea//2, float('inf'), inplace=inplace)
    def test_fuzz(self):
        input_size_pairs = ((7777 * 77, 555 * 555), (777, 555),
                            (555, 2048 * 32 + 1), (2048 * 32 + 1,
                                                   555), (555, 2048 * 32),
                            (2048 * 32, 555), (33333, 555), (555, 33333))
        appliers = (MultiTensorApply(2048 * 32), MultiTensorApply(333),
                    MultiTensorApply(33333))
        repeat_tensors = (1, 55)

        for sizea, sizeb in input_size_pairs:
            for applier in appliers:
                for repeat in repeat_tensors:
                    for in_type in (torch.float32, torch.float16):
                        for per_tensor in (False, True):
                            self.l2norm(sizea, sizeb, applier, repeat, in_type,
                                        per_tensor)