예제 #1
0
import logging
import sys
import numpy
import random 
from apgl.egograph.SvmInfoExperiment import SvmInfoExperiment

logging.basicConfig(stream=sys.stdout, level=logging.INFO)
numpy.random.seed(21)
random.seed(21)

SvmInfoExperiment.saveSvmParams(SvmInfoExperiment.getSvmParamsFileName())
예제 #2
0
infoProb = 0.1
"""
p = 0.1
k = 15
generator = SmallWorldGenerator(p, k)
"""

#A second set of parameters 
p = float(30)/numVertices
generator = ErdosRenyiGenerator(p)

simulationRepetitions = 5 
maxIterations = 3
sampleSize = SvmInfoExperiment.getNumSimulationExamples()
#sampleSize = 1000
svmParamsFile = SvmInfoExperiment.getSvmParamsFileName()
CVal, kernel, kernelParamVal, errorCost = SvmInfoExperiment.loadSvmParams(svmParamsFile)

simulator = SvmEgoSimulator(examplesFileName)
simulator.trainClassifier(CVal, kernel, kernelParamVal, errorCost, sampleSize)

egoCsvReader = EgoCsvReader()

genderIndex = egoCsvReader.genderIndex
ageIndex = egoCsvReader.ageIndex
incomeIndex = egoCsvReader.incomeIndex
townSizeIndex = egoCsvReader.townSizeIndex
foodRiskIndex = egoCsvReader.foodRiskIndex
experienceIndex = egoCsvReader.experienceIndex
internetFreqIndex = egoCsvReader.internetFreqIndex
peopleAtWorkIndex = egoCsvReader.peopleAtWorkIndex