#----------------------------------------------
#--- Author         : Ahmet Ozlu
#--- Mail           : [email protected]
#--- Date           : 27th July 2019
#----------------------------------------------

# Imports
import tensorflow as tf

# Object detection imports
from utils import backbone
from api import object_counting_api

input_video = "./input_images_and_videos/smurf_input.avi"

# By default I use an "SSD with Mobilenet" model here. See the detection model zoo (https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies.
detection_graph, category_index = backbone.set_model(
    'custom_frozen_inference_graph', 'detection.pbtxt')

is_color_recognition_enabled = 0

object_counting_api.object_counting(input_video, detection_graph,
                                    category_index,
                                    is_color_recognition_enabled)
예제 #2
0
# Object detection imports
from utils import backbone
from api import object_counting_api

if tf.__version__ < '1.4.0':
    raise ImportError(
        'Please upgrade your tensorflow installation to v1.4.* or later!')

input_video = "./input_images_and_videos/New Office TOUR!  Karlie Kloss.mp4"

# By default I use an "SSD with Mobilenet" model here. See the detection model zoo (https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies.
detection_graph, category_index = backbone.set_model(
    'ssd_mobilenet_v1_coco_2017_11_17')

#object_counting_api.object_counting(input_video, detection_graph, category_index, 0) # for counting all the objects, disabled color prediction

#object_counting_api.object_counting(input_video, detection_graph, category_index, 1) # for counting all the objects, enabled color prediction

targeted_objects = "person"  # (for counting targeted objects) change it with your targeted objects
fps = 24  # change it with your input video fps
width = 854  # change it with your input video width
height = 480  # change it with your input vide height
is_color_recognition_enabled = 0

#object_counting_api.targeted_object_counting(input_video, detection_graph, category_index, is_color_recognition_enabled, targeted_objects, fps, width, height) # targeted objects counting

object_counting_api.object_counting(input_video, detection_graph,
                                    category_index,
                                    is_color_recognition_enabled, fps, width,
                                    height)  # counting all the objects