def test_scaled_method(self): data = { "exam": { "scoring_method": "scaled", "scaled_factor": .79 }, "student_list": [ { "item_responses": [ {"item_id": 1, "response": 1}, {"item_id": 2, "response": 0}, {"item_id": 3, "response": 1}, {"item_id": 4, "response": 1} ] }, { "item_responses": [ {"item_id": 1, "response": 1} ] } ] } expected = ({"scores": {"1": 0.593, "2": 0.198}}, {"average": 0.395}, {"weighted_scores": {"1": 0.395, "2": 0.0}}, {"weighted_avg": 0.198}) scoring = (calculate_scores(data), calculate_average(data), calculate_weighted_scores(data), calculate_weighted_average(data)) assert scoring == expected
def test_absolute_method(self): data = { "exam": { "scoring_method": "absolute" }, "student_list": [ { "item_responses": [ {"item_id": 1, "response": 1}, {"item_id": 2, "response": 0}, {"item_id": 3, "response": 1}, {"item_id": 4, "response": 1} ] }, { "item_responses": [ {"item_id": 1, "response": 1} ] } ] } expected = ({"scores": {"1": 3.0, "2": 1.0}}, {"average": 2.0}, {"weighted_scores": {"1": 2.0, "2": 0.0}}, {"weighted_avg": 1.0}) scoring = (calculate_scores(data), calculate_average(data), calculate_weighted_scores(data), calculate_weighted_average(data)) assert scoring == expected
def analyze_test(param): """ A function to get an exam's analysis: It calls every service used to analyze an exam and then returns the analysis. :param: a json in the Reliabilty Measures standard json format :return: a dictionary of dictionaries: a dictionary with the results of the services as values """ service_key = get_service_config(6) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) # use microservice calls here when all are hosted val_kr20 = calculate_kr20(inp) val_idr = calculate_idr(inp) val_difficulty = calculate_difficulty(inp) val_scores = calculate_scores(inp) val_average = calculate_average(inp) val_weighted_s = calculate_weighted_scores(inp) val_weighted_avg = calculate_weighted_average(inp) val_excludes = get_exclude_recos(inp) val_diff_avg = calculate_difficulty_average(inp) val_idr_avg = calculate_idr_average(inp) val_num_correct = calculate_num_correct(inp) val_assumptions = get_assumptions(inp) val_topic_rights = calculate_topic_rights(inp) val_topic_avgs = calculate_topic_averages(inp) val_group_analysis = analyze_groups(inp) # join all results result = {} items = [ val_kr20, val_idr, val_difficulty, val_scores, val_average, val_weighted_s, val_weighted_avg, val_excludes, val_diff_avg, val_idr_avg, val_num_correct, val_assumptions, val_topic_rights, val_group_analysis, val_topic_avgs ] for item in items: result.update(item) return {service_key: result}
def test_scores(self): expected = {"1234": 0.571, "1235": 0.714, "1236": 0.429} scores = calculate_scores(self.data)["scores"] assert scores == expected
def analyze_groups(param): """ A function to get an exam's analysis by students' group: It groups all students by group and then iterates over the groups, calling every service used to analyze an exam. :param: a json in the Reliabilty Measures standard json format :return: a dictionary of nested dictionaries: a dictionary with groups as keys and the exam analysis as values """ service_key = get_service_config(14) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) assumptions_key = get_service_config(13) assumptions = get_assumptions(inp)[assumptions_key] students_dict = sort_students_by_group(inp) group_list = get_group_list(inp) group_analysis = {} if group_list == get_keyword_value("no_group"): return {service_key: get_keyword_value("no_group")} for i in students_dict: curr_students = students_dict[i] catch_error = get_error(curr_students) if catch_error[0]: group_analysis[i] = catch_error[1] continue student_list = get_student_list(curr_students) val_kr20 = calculate_kr20(curr_students) val_idr = calculate_idr(curr_students) val_difficulty = calculate_difficulty(curr_students) val_scores = calculate_scores(curr_students) val_average = calculate_average(curr_students) val_weighted_s = calculate_weighted_scores(curr_students) val_weighted_avg = calculate_weighted_average(curr_students) val_excludes = get_exclude_recos(curr_students) val_diff_avg = calculate_difficulty_average(curr_students) val_idr_avg = calculate_idr_average(curr_students) val_num_correct = calculate_num_correct(curr_students) val_topic_rights = calculate_topic_rights(curr_students) val_topic_avgs = calculate_topic_averages(curr_students) curr_assumptions = {} for k in assumptions: for j in student_list: if k == j[get_keyword_value("id")]: curr_assumptions[k] = assumptions[k] val_assumptions = {assumptions_key: curr_assumptions} result = { 'overall_quiz': { 'average': val_average['average'], 'kr20': val_kr20['kr20'], 'weighted_avg': val_weighted_avg['weighted_avg'] }, 'overall_items': { 'diff_avg': val_diff_avg['diff_avg'], 'idr_avg': val_idr_avg['idr_avg'] }, 'item_analysis': [], 'student_scores': [] } for k in val_difficulty['difficulty']: curr_idr = val_idr['idr'] if curr_idr is not str: curr_idr = val_idr['idr'][k] result['item_analysis'].append({ 'item_id': k, 'difficulty': val_difficulty['difficulty'][k], 'idr': curr_idr, 'num_correct': val_num_correct['num_correct'][k] }) for k in val_scores['scores']: result['student_scores'].append({ 'student': k, 'score': val_scores['scores'][k], 'weighted_score': val_weighted_s['weighted_scores'][k] }) items = [ val_excludes, val_assumptions, val_topic_rights, val_topic_avgs ] for item in items: result.update(item) group_analysis[i] = result return {service_key: group_analysis}
def analyze_test(param): """ A function to get an exam's analysis: It calls every service used to analyze an exam and then returns the analysis. :param: a json in the Reliabilty Measures standard json format :return: a dictionary of dictionaries: a dictionary with the results of the services as values """ service_key = get_service_config(6) catch_error = get_error(param) if catch_error[0]: return {service_key: catch_error[1]} inp = update_input(param) # use microservice calls here when all are hosted val_kr20 = calculate_kr20(inp) val_idr = calculate_idr(inp) val_difficulty = calculate_difficulty(inp) val_scores = calculate_scores(inp) val_average = calculate_average(inp) val_weighted_s = calculate_weighted_scores(inp) val_weighted_avg = calculate_weighted_average(inp) val_excludes = get_exclude_recos(inp) val_diff_avg = calculate_difficulty_average(inp) val_idr_avg = calculate_idr_average(inp) val_num_correct = calculate_num_correct(inp) val_assumptions = get_assumptions(inp) val_topic_rights = calculate_topic_rights(inp) val_topic_avgs = calculate_topic_averages(inp) val_group_analysis = analyze_groups(inp) # join all results result = { 'overall_quiz': { 'average': val_average['average'], 'kr20': val_kr20['kr20'], 'weighted_avg': val_weighted_avg['weighted_avg'] }, 'overall_items': { 'diff_avg': val_diff_avg['diff_avg'], 'idr_avg': val_idr_avg['idr_avg'] }, 'item_analysis': [], 'student_scores': [] } for i in val_difficulty['difficulty']: curr_idr = val_idr['idr'] if type(curr_idr) is not str: curr_idr = val_idr['idr'][i] result['item_analysis'].append({ 'item_id': i, 'difficulty': val_difficulty['difficulty'][i], 'idr': curr_idr, 'num_correct': val_num_correct['num_correct'][i] }) for i in val_scores['scores']: result['student_scores'].append({ 'student': i, 'score': val_scores['scores'][i], 'weighted_score': val_weighted_s['weighted_scores'][i] }) items = [ val_excludes, val_assumptions, val_topic_rights, val_group_analysis, val_topic_avgs ] for item in items: result.update(item) return {service_key: result}