def test_watts_replication(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = k * ad.data["x"].tolist() df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") np.testing.assert_allclose(ad.poverty("watts", pline=pline), ad2.poverty("watts", pline=pline))
def test_watts_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="watts", pline=pline) == ad2.poverty(method="watts", pline=pline)
def test_headcount_replication(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = k * ad.data["x"].tolist() df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("headcount", pline=pline) == ad2.poverty("headcount", pline=pline)
def test_hagenaars_symmetry(): data = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(data.data.values) y = data.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) dr2 = ApodeData(df2, income_column="x") assert data.poverty(method="hagenaars", pline=pline) == dr2.poverty(method="hagenaars", pline=pline)
def test_bd_homogeneity(): data = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(data.data.values) y = data.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) dr2 = ApodeData(df2, income_column="x") assert data.poverty("bd", pline=pline) == dr2.poverty("bd", pline=pline * k)
def test_thon_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("thon", pline=pline) == ad2.poverty("thon", pline=pline * k)
def test_severity_replication(): data = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(data.data.values) y = k * data.data["x"].tolist() df2 = pd.DataFrame({"x": y}) dr2 = ApodeData(df2, income_column="x") np.testing.assert_allclose( data.poverty("severity", pline=pline), dr2.poverty("severity", pline=pline), )