예제 #1
0
    def test_warning_utils(self):
        root_trace = FunctionalTrace(
            parent_trace=None,
            path_mask=self._path_mask).doing("Testing Warning Utils")
        try:
            TEST_SCENARIO = 'test_warning_utils'

            my_trace = root_trace.doing("Testing a fake warning")

            with warnings.catch_warnings(record=True) as w:
                WarningUtils().turn_traceback_on(my_trace, warnings_list=w)

                warnings.warn("Test warning for Warning Utils",
                              DeprecationWarning)

                WarningUtils().handle_warnings(my_trace, warning_list=w)

                # The handling of the warning should raise an exception, so we should not get here
                self.assertTrue(1 == 2)

        except ApodeixiError as ex:
            output_txt = ex.trace_message()
            self._compare_to_expected_txt(parent_trace=my_trace,
                                          output_txt=output_txt,
                                          test_output_name=TEST_SCENARIO,
                                          save_output_txt=True)
예제 #2
0
    def save(self, parent_trace, data_dict, path, use_cache=True):
        '''
        '''
        # As documented in https://nbconvert.readthedocs.io/en/latest/execute_api.html
        #
        # May get an error like this unless we explicity use UTF8 encoding:
        #
        #   File "C:\Alex\CodeImages\technos\anaconda3\envs\ea-journeys-env\lib\encodings\cp1252.py", line 19, in encode
        #   return codecs.charmap_encode(input,self.errors,encoding_table)[0]
        #   UnicodeEncodeError: 'charmap' codec can't encode character '\u2610' in position 61874: character maps to <undefined>
        #
        # Happens in particular when trying to save a string representing a Jupyter notebook's execution, since for the same
        # reason above that string had to be written to a string using UTF8 encoding, so now if we save to a file we must use UTF8
        with open(path, 'w', encoding="utf8") as file:

            # YAML invokes asyncio.base_events.py, that is noisy and issues spurious ResourceWarnings. So catch and suppress
            # such warnings. For other warnings, raise an ApodeixiError
            with warnings.catch_warnings(record=True) as w:
                WarningUtils().turn_traceback_on(parent_trace, warnings_list=w)

                _yaml.dump(data_dict, file) #, Dumper=YAML_DUMPER)
            
                if use_cache:
                    _YAML_CACHE[path] = data_dict
                WarningUtils().handle_warnings(parent_trace, warning_list=w)           
예제 #3
0
    def replicate_dataframe(self, parent_trace, seed_df, categories_list):
        '''
        Creates and returns a DataFrame, by replicating the `seed_df` for each member of the `categories_list`,
        and concatenating them horizonally.
        The columns are also added a new top level, from `categories_list`.

        A usecase where this is used is to create templates for product-related manifests where similar content
        must exist per sub-product.
        
        Example:

        Suppose a product has subproducts ["Basic", "Premium], and this is provided as the `categories_list`.
        Suppose the `seed_df` is some estimates about the product, such as:

                bigRock  FY 19  FY 20  FY 21
            ================================
            0    None    150    150    150
            1    None    100    100    100
            2    None      0      0      0
            3    None     45     45     45
            4    None      0      0      0
            5    None    300    300    300
            6    None    140    140    140

        Then this method would return the following DataFrame

                        Basic                |          Premium
                bigRock  FY 19  FY 20  FY 21 |  bigRock  FY 19  FY 20  FY 21
            ====================================================================
            0    None    150    150    150      None    150    150    150   
            1    None    100    100    100      None    100    100    100
            2    None      0      0      0      None      0      0      0
            3    None     45     45     45      None     45     45     45
            4    None      0      0      0      None      0      0      0
            5    None    300    300    300      None    300    300    300
            6    None    140    140    140      None    140    140    140

        @param categories_list A list of hashable objects, such as strings or ints
        '''
        with warnings.catch_warnings(record=True) as w:
            WarningUtils().turn_traceback_on(parent_trace, warnings_list=w)

            dfs_dict = {}
            for category in categories_list:
                dfs_dict[category] = seed_df.copy()

            replicas_df = _pd.concat(dfs_dict, axis=1)

            WarningUtils().handle_warnings(parent_trace, warning_list=w)

            return replicas_df
예제 #4
0
    def load(self, parent_trace, path, use_cache=True):
        '''
        Returns a dictionary, corresponding to the loaded representation of the YAML file in the given `path`
        '''
        if use_cache and path in _YAML_CACHE.keys():
            return _YAML_CACHE[path]

        try:
            with open(path, 'r', encoding="utf8") as file:
                # YAML invokes asyncio.base_events.py, that is noisy and issues spurious ResourceWarnings. So catch and suppress
                # such warnings. For other warnings, raise an ApodeixiError
                with warnings.catch_warnings(record=True) as w:
                    WarningUtils().turn_traceback_on(parent_trace, warnings_list=w)

                    loaded_dict             = _yaml.load(file, Loader=_yaml.FullLoader)
                    if use_cache:
                        _YAML_CACHE[path]       = loaded_dict

                    WarningUtils().handle_warnings(parent_trace, warning_list=w)
                    return loaded_dict
        except Exception as ex:
            raise ApodeixiError(parent_trace, "Found a problem loading YAML file",
                                 data = {"path":        str(path),
                                        "error":        str(ex)})
예제 #5
0
def form(kb_session, posting_api, namespace, subnamespace, dry_run,
         environment, timestamp):
    '''
    Requests a form (an Excel spreadsheet) which (after some edits, as appropriate) can be used as the
    input to the post command.
    '''
    timer = ApodeixiTimer()
    func_trace = FunctionalTrace(parent_trace=None, path_mask=None)
    root_trace = func_trace.doing("CLI call to post",
                                  origination={'signaled_from': __file__})
    kb_operation_succeeded = False
    try:
        # Catch warnings and handle them so that we avoid spurious noise in the CLI due to noisy 3rd party libraries
        with warnings.catch_warnings(record=True) as w:
            WarningUtils().turn_traceback_on(root_trace, warnings_list=w)
            if environment != None:
                kb_session.store.activate(parent_trace=root_trace,
                                          environment_name=environment)
                click.echo(CLI_Utils().sandox_announcement(environment))
            elif dry_run == True:
                sandbox_name = kb_session.provisionSandbox(root_trace)
                click.echo(CLI_Utils().sandox_announcement(sandbox_name))
            '''
            else:
                raise ApodeixiError(root_trace, "Sorry, only sandbox-isolated runs are supported at this time. Aborting.")
            '''
            # Now that we have pinned down the environment (sandbox or not) in which to call the KnowledgeBase's services,
            # set that environment's tag to use for KnoweldgeBase's posting logs, if the user set it.
            if timestamp:
                kb_session.store.current_environment(root_trace).config(
                    root_trace).use_timestamps = timestamp

            my_trace = root_trace.doing(
                "Invoking KnowledgeBase's requestForm service")

            output_dir = _os.getcwd()
            clientURL = kb_session.store.getClientURL(my_trace)
            relative_path, void = PathUtils().relativize(parent_trace=my_trace,
                                                         root_dir=clientURL,
                                                         full_path=output_dir)

            form_request = kb_session.store.getBlindFormRequest(
                parent_trace=my_trace,
                relative_path=relative_path,
                posting_api=posting_api,
                namespace=namespace,
                subnamespace=subnamespace)

            response, log_txt, rep = kb_session.kb.requestForm(
                parent_trace=my_trace, form_request=form_request)
            kb_operation_succeeded = True
            manifests_description = CLI_Utils().describe_req_form_response(
                my_trace,
                form_request_response=response,
                store=kb_session.store,
                representer=rep)

            click.echo(manifests_description)
            output = "Success"
            click.echo(output)
            click.echo(timer.elapsed_time_message())

            WarningUtils().handle_warnings(root_trace, warning_list=w)

    except ApodeixiError as ex:
        error_msg = CLI_ErrorReporting(kb_session).report_a6i_error(
            parent_trace=root_trace, a6i_error=ex)
        if kb_operation_succeeded:
            error_msg                       = "KnowledgeBase operation completed, but run into a problem when preparing "\
                                                + "a description of the response:\n"\
                                                + error_msg
        # GOTCHA
        #       Use print, not click.echo or click exception because they don't correctly display styling
        #       (colors, underlines, etc.). So use vanilla Python print and then exit
        print(error_msg)
        _sys.exit()
    except Exception as ex:
        try:
            error_msg = CLI_ErrorReporting(kb_session).report_generic_error(
                parent_trace=root_trace, generic_error=ex)
            if kb_operation_succeeded:
                error_msg                   = "KnowledgeBase operation completed, but run into a problem when preparing "\
                                                + "a description of the response:\n"\
                                                + error_msg
        except Exception as ex2:
            error_msg                       = "CLI run into trouble: found error:\n\n\t" + str(ex) + "\n\n" \
                                                + "To make things worse, when trying to produce an error log file with a "\
                                                + "stack trace, run into an additional error:\n\n\t" + str(ex2)
        # GOTCHA
        #       Use print, not click.echo or click exception because they don't correctly display styling
        #       (colors, underlines, etc.). So use vanilla Python print and then exit
        print(error_msg)
        _sys.exit()
예제 #6
0
    def skeleton_test(self,
                      parent_trace,
                      cli_command_list,
                      output_cleanining_lambda,
                      when_to_check_environment=PER_COMMAND):
        '''
        @param when_to_check_environment A string enum, that determines how frequently to check the contents
                    of the environment as the CLI commands execulte. Possible values:

                    * CLI_Test_Skeleton.PER_COMMAND
                    * CLI_Test_Skeleton.ONLY_AT_END
                    * CLI_Test_Skeleton.NEVER
        '''
        ME = CLI_Test_Skeleton
        try:
            my_trace = self.trace_environment(parent_trace,
                                              "Isolating test case")
            if self.provisioned_env_name == None:
                # This is the second time we provision the isolated environment, but now with a different context, i.e.,
                # different self.a6i_config and different self.test_config_dict than the first time we provisioned
                # an isolated environment, which was in self.setUp. See comments there. The environment provisioned
                # here is a child of the one configured in self.setUp, and is fo
                self.provisionIsolatedEnvironment(my_trace)
                if when_to_check_environment == ME.PER_COMMAND:
                    self.check_environment_contents(my_trace)
                self.provisioned_env_name = self.stack().store(
                ).current_environment(my_trace).name(my_trace)
            else:
                self.stack().store().activate(my_trace,
                                              self.provisioned_env_name)

            my_trace = self.trace_environment(
                parent_trace,
                "Invoking " + str(len(cli_command_list)) + " commands")
            if True:
                runner = CliRunner()
                for raw_command_argv in cli_command_list:
                    # The raw_command_arv might include some lambdas that need to be evaluated not in order to
                    # determine the real argv to pass to the CLI. The reason there might be lambdas is that some
                    # parameters for some commands can only be determined after earlier commands are run, so they
                    # aren't known when the command list was defined, and only now that we have run prior commands
                    # can it be determined.
                    # Example:
                    #       The sandbox to use, if flag "--sandbox" is on. That can only be known after
                    # self.sandbox is set, which happens when the first command runs.
                    def _unraw_param(param):
                        if callable(param):
                            return param()
                        else:
                            # As a precaution, make sure we return a string. Otherwise, if param is an int,
                            # click will later through some exception
                            return str(param)

                    # Note: two operations are being done here:
                    #
                    # 1) Replacing a "delayed parameter": a parameter that couldn't be given when the caller's code was
                    #   written, but can at runtime, so the "delayed parameter" is a callable that, if called, would return
                    #   the actual parameter to use. Example: the sandbox parameter, which is determined in the first
                    #   post of the script and must be passed to all subsequent post commands so they continue the work
                    #   in a common sandbox.
                    # 2) Filtering out nulls. That is a trick to enable the caller, for example, to use the same script
                    #   for both dry runs and live runs. All the caller has to do is set the "--sandbox <sandbox>" to a
                    #   value when using the script with a sandbox, and to None when doing it live.
                    command_argv = [
                        _unraw_param(param) for param in raw_command_argv
                        if param != None
                    ]

                    loop_trace = self.trace_environment(
                        my_trace, "Executing '" +
                        " ".join([str(cmd) for cmd in command_argv]) + "'")
                    # Some Python libraries can be too noisy with warnings, and these get printed out to standard err/output
                    # where the CLI will regard as "part of output" and display them in regression test output. This makes
                    # regression output both ugly and sometimes non-deterministc.
                    # To remedy this, we change the warning context to catch all warnings and based on what we catch, either
                    # 1. raise an ApodeixiError so that the Apodeixi developer can change the code construct that led to the
                    #    warning, possible as the ApodeixiError will include a stack trace to pin point where in the Apodeixi
                    #    code the warning was triggered,
                    # 2. or ignore the warning if that is pure noise and no code change in Apodeixi could prevent it from being
                    #   triggered
                    #
                    with warnings.catch_warnings(record=True) as w:
                        WarningUtils().turn_traceback_on(parent_trace,
                                                         warnings_list=w)

                        result = runner.invoke(self.cli, command_argv)

                        WarningUtils().handle_warnings(parent_trace,
                                                       warning_list=w)

                    if result.exit_code != 0:
                        raise ApodeixiError(loop_trace,
                                            "CLI command failed",
                                            data={
                                                "CLI exit code":
                                                str(result.exit_code),
                                                "CLI exception":
                                                str(result.exc_info),
                                                "CLI output":
                                                str(result.output),
                                                "CLI traceback":
                                                str(result.exc_info)
                                            })

                    sandbox = CLI_Utils().infer_sandbox_name(
                        loop_trace, result.output)
                    if sandbox != None:
                        # We only overwrite self.sandbox if this particular command chose a sandbox. Otherwise
                        # we retain whatever self.sandbox was set by prior commands. This is important since some commands
                        # don't have a --sandbox option (Example: get namespaces), but that does not mean that
                        # our intention is to switch out of the sandbox and into the parent environment.
                        self.sandbox = sandbox

                    command_flags = [
                        token for token in command_argv
                        if token.startswith("--")
                    ]
                    if command_argv[0] in ["post"]:
                        argv_without_arguments = command_argv[:1]
                    elif command_argv[0] in ["get"]:
                        argv_without_arguments = command_argv[:2]
                    elif command_argv[0] in ["import"]:
                        argv_without_arguments = command_argv[:2]
                    elif command_argv[0] in ["diff"]:
                        argv_without_arguments = command_argv[:1]
                    else:
                        raise ApodeixiError(
                            my_trace, "Command not recognized: '" +
                            str(command_argv[0]) + "'")

                    argv_without_arguments.extend(
                        command_flags)  # Like post --dry-run

                    # Once we are done building it, command_without_flag_params will be something like
                    #
                    #   => post --dry-run products.static-data.admin.a6i.xlsx
                    #
                    # or
                    #
                    #   => post --sandbox products.static-data.admin.a6i.xlsx
                    #
                    # hence it will be suitable for inclusion in deterministic output. For example, we remove
                    # timestamp-sensitive sandbox names (if any) and also the full path for the posted file.
                    command_without_flag_params = " ".join(
                        argv_without_arguments)
                    if command_argv[0] in ["post"] or command_argv[:2] in [[
                            "get", "form"
                    ]]:
                        # These are commands with a unique argument. Other commands lack it
                        path_posted = command_argv[-1]
                        unique_argument = _os.path.split(path_posted)[1]
                        command_without_flag_params += " " + unique_argument
                    elif command_argv[:2] in [["import", "aha"]]:
                        args = command_argv[-4:]
                        command_without_flag_params += " " + " ".join(args)

                    output_to_display = "=> " + command_without_flag_params + "\n\n"

                    if output_cleanining_lambda == None:
                        output_to_display += result.output
                    else:
                        output_to_display += output_cleanining_lambda(
                            result.output)

                    self.check_cli_output(
                        parent_trace=loop_trace,
                        cli_output=output_to_display,
                        cli_command=" ".join(
                            argv_without_arguments)  # Like post --dry-run
                    )
                    if when_to_check_environment == ME.PER_COMMAND:
                        self._check_CLI_environment(loop_trace)

            if when_to_check_environment == ME.ONLY_AT_END:
                # We display the consolidated effect of all commands in the script onto the KnowledgeBase used by the CLI
                self._check_CLI_environment(my_trace)

            my_trace = self.trace_environment(parent_trace,
                                              "Deactivating environment")
            self.stack().store().deactivate(my_trace)

        except ApodeixiError as ex:
            click.echo(ex.trace_message())
            self.assertTrue(1 == 2)
예제 #7
0
    def run(self, parent_trace):
        # Catch warnings and handle them so that we avoid spurious noise in the CLI due to noisy 3rd party libraries
        with warnings.catch_warnings(record=True) as w:
            WarningUtils().turn_traceback_on(parent_trace, warnings_list=w)

            # As documented in https://nbconvert.readthedocs.io/en/latest/execute_api.html
            #
            # May get an error like this unless we explicity use UTF8 encoding:
            #
            #   File "C:\Alex\CodeImages\technos\anaconda3\envs\ea-journeys-env\lib\encodings\cp1252.py", line 19, in encode
            #   return codecs.charmap_encode(input,self.errors,encoding_table)[0]
            #   UnicodeEncodeError: 'charmap' codec can't encode character '\u2610' in position 61874: character maps to <undefined>
            #
            my_trace = parent_trace.doing("Attempting to load notebook")
            try:
                with open(self.src_folder + '/' + self.src_filename,
                          encoding="utf8") as f:
                    nb = _nbformat.read(f, as_version=4)
            except Exception as ex:
                raise ApodeixiError(
                    "Encountered this error while loading notebook: " +
                    str(ex),
                    data={
                        'src_folder': self.src_folder,
                        'src_filename': self.src_filename
                    })

            my_trace = parent_trace.doing("Attempting to execute notebook")
            try:
                #ep = ExecutePreprocessor(timeout=600, kernel_name='python3')
                ep = ExecutePreprocessor(
                    timeout=600
                )  # Use virtual-env's kernel, so don't specify: kernel_name='python3'

                ep.preprocess(
                    nb, {'metadata': {
                        'path': self.destination_folder + '/'
                    }}
                )  # notebook executes in the directory specified by the 'path' metadata field
            except Exception as ex:
                raise ApodeixiError(
                    my_trace,
                    "Encountered this error while executing notebook: " +
                    str(ex),
                    data={
                        'src_folder': self.src_folder,
                        'src_filename': self.src_filename
                    })

            my_trace = parent_trace.doing("Attempting to save notebook")
            try:
                if self.destination_folder != None and self.destination_filename != None:
                    with open(self.destination_folder + '/' +
                              self.destination_filename,
                              'w',
                              encoding='utf-8') as f:
                        _nbformat.write(nb, f)
            except Exception as ex:
                raise ApodeixiError(
                    "Encountered this error while executing notebook: " +
                    str(ex),
                    data={
                        'destination_folder': self.destination_folder,
                        'destination_filename': self.destination_filename
                    })

            WarningUtils().handle_warnings(parent_trace, warning_list=w)

            my_trace = parent_trace.doing(
                "Converting notebook to dictionary after executing it")
            return NotebookUtils._val_to_dict(my_trace, nb)
예제 #8
0
    def read(self, parent_trace):
        '''
        Loads the Apodeixi object in Excel that this ExcelTableReader was initialized for, and returns it
        as a Pandas DataFrame 
        '''
        my_trace = parent_trace.doing("Parsing excel range",
                                      data={
                                          "excel_range": str(self.excel_range),
                                          "excel sheet": str(self.excel_sheet)
                                      })
        first_column, last_column, first_row, last_row = ExcelTableReader.parse_range(
            my_trace, self.excel_range)

        header_list, nrows = self.xlr_config.pandasRowParameters(
            parent_trace, first_row, last_row)

        if len(header_list) != self.xlr_config.nb_header_levels:
            raise ApodeixiError(
                my_trace,
                "Internal problem: inconsistency as to the number of headers expected in Excel",
                data={
                    "excel_fullpath": str(self.excel_fullpath),
                    "excel sheet": str(self.excel_sheet),
                    "excel range": str(self.excel_range),
                    "# headers inferred": str(len(header_list)),
                    "# headers configured":
                    str(self.xlr_config.nb_header_levels)
                })
        my_trace = parent_trace.doing("Loading Excel spreadsheet",
                                      data={
                                          "excel_fullpath":
                                          str(self.excel_fullpath),
                                          "excel sheet":
                                          str(self.excel_sheet)
                                      })
        try:
            # Pandas sometimes issues future warnings. By default, these are printed to stderr, which can mess up the
            # deterministic requirement for regression test output.
            # So we would rather have an exception be thrown so that we know of where in the Apodeixi code base a code
            # construct needs to be made future-proof. That is why we use the warnings context manager here
            with warnings.catch_warnings(record=True) as w:
                WarningUtils().turn_traceback_on(parent_trace, warnings_list=w)

                # We have two cases:
                #   1. header_list is a singleton - this is the "normal" case, and we can use the `usecols` parameter
                #      in Pandas read_excel
                #   2. header_list has multiple elements. This means we have a MultiLevel index in the DataFrame-to-be,
                #      and unfortunately Pandas disallows `usecols` in that case. That makes the logic more complicated,
                #      because after calling Pandas::read_excel we have to prune spurious columns that might have been
                #      picked up by Pandas::read_excel, since we couldn't tell it to just use columns in the range
                #      first_column:last_column
                #
                #  Case #2 is more general than #1, so the logic for #2 could address #1 as well. However, since historically
                #  Apodeixi only supported #1, we retain the simpler code for #1 as a defensive quality tactic: if for
                #  some reason our implementation of #2 is buggy, we don't want that bug to affect the previously working
                #  functionality for usecase #1
                #  So we explicitly have an "if-else" statement for the two cases, even if in theory that's unnecessary
                #
                if len(header_list) == 1:
                    df = _pd.read_excel(io=self.excel_fullpath,
                                        sheet_name=self.excel_sheet,
                                        header=header_list,
                                        usecols=first_column + ':' +
                                        last_column,
                                        nrows=nrows)
                elif len(header_list) > 1:
                    # This is the MultiLevel index case, and can' t use `usecols` in the call to Pandas::read_excel, so must
                    # first call read_excel and after that prune the result to confine to the desired columns
                    #
                    raw_df = _pd.read_excel(io=self.excel_fullpath,
                                            sheet_name=self.excel_sheet,
                                            header=header_list,
                                            nrows=nrows)

                    # We need to convert the letter columns to integers, before we can prune them. That requires a little
                    # helper function inspired by
                    # https://stackoverflow.com/questions/7261936/convert-an-excel-or-spreadsheet-column-letter-to-its-number-in-pythonic-fashion
                    def _col2num(col):
                        '''
                        Converts Excel letter columns to ints, starting at 0
                        '''
                        num = 0
                        for c in col:
                            if c in _string.ascii_letters:
                                num = num * 26 + (ord(c.upper()) -
                                                  ord('A')) + 1
                        return num - 1

                    first_col_nb = _col2num(first_column)
                    last_col_nb = _col2num(last_column)

                    raw_columns = list(raw_df.columns)
                    # Prune spurious columns on the left
                    df = raw_df.drop(raw_columns[:first_col_nb], axis=1)

                    # Prune columns on the right
                    df = df.drop(raw_columns[last_col_nb + 1:], axis=1)

                else:
                    raise ApodeixiError(
                        parent_trace,
                        "Can't load Excel file because no headers were specified",
                        data={
                            "path": str(self.excel_fullpath),
                            "sheet_name": str(self.sheet_name),
                            "range": str(self.excel_range)
                        })
                WarningUtils().handle_warnings(parent_trace, warning_list=w)

        except PermissionError as ex:
            raise ApodeixiError(
                my_trace,
                "Was not allowed to access excel file. Perhaps you have it open?",
                data={
                    "excel_fullpath": str(self.excel_fullpath),
                    "excel sheet": str(self.excel_sheet),
                    "error": str(ex)
                },
                origination={
                    'concrete class': str(self.__class__.__name__),
                    'signaled_from': __file__
                })
        except ValueError as ex:
            error_msg = str(ex)
            if error_msg.startswith(
                    "Worksheet named '") and error_msg.endswith("' not found"):
                raise ApodeixiError(
                    my_trace,
                    "Are you missing the Posting Label, or perhaps you have a typo or "
                    +
                    "missing value in the Posting Label's 'data.sheet' fields? "
                    + "\nGot this error:" + "\n\n" + error_msg)
            else:
                raise ApodeixiError(
                    my_trace,
                    "Found an error while reading the Excel file",
                    data={'error': error_msg})
        except FileNotFoundError as ex:
            error_msg = str(ex)
            if error_msg.startswith(
                    "Worksheet named '") and error_msg.endswith("' not found"):
                raise ApodeixiError(
                    my_trace,
                    "Is your Posting Label right in the Excel spreadsheet? Got this error:"
                    + "\n\n" + error_msg)
            else:
                raise ApodeixiError(
                    my_trace,
                    "Found an error while reading the Excel file",
                    data={'error': error_msg})

        my_trace = parent_trace.doing(
            "Validating data loaded from Excel is not empty")
        if len(df.columns) == 0:
            raise ApodeixiError(
                my_trace,
                "Incorrectly formatted Excel range was given: '" +
                self.excel_range + "'. It spans no columns with data",
                data={
                    "excel_fullpath": str(self.excel_fullpath),
                    "excel sheet": str(self.excel_sheet)
                },
                origination={
                    'concrete class': str(self.__class__.__name__),
                    'signaled_from': __file__
                })
        if len(df.index) == 0:
            raise ApodeixiError(
                my_trace,
                "Incorrectly formatted Excel range was given: '" +
                self.excel_range + "'. It spans no rows with data",
                data={
                    "excel_fullpath": str(self.excel_fullpath),
                    "excel sheet": str(self.excel_sheet)
                },
                origination={
                    'concrete class': str(self.__class__.__name__),
                    'signaled_from': __file__
                })

        my_trace = parent_trace.doing(
            "Computing manifest DataFrame from raw DataFrame loaded from Excel"
        )
        manifest_df = self.xlr_config.toManifestDF(parent_trace=my_trace,
                                                   raw_df=df,
                                                   first_row=first_row,
                                                   last_row=last_row)

        return manifest_df