예제 #1
0
class IndexedTextSearchComparisonFunctionSpacySimilarityTests(ChatBotTestCase):
    """
    Test that the search algorithm works correctly with the
    spacy similarity comparison function.
    """
    def setUp(self):
        super().setUp()
        self.search_algorithm = IndexedTextSearch(
            self.chatbot,
            statement_comparison_function=comparisons.SpacySimilarity)

    def test_get_closest_statement(self):
        """
        Note, the content of the in_response_to field for each of the
        test statements is only required because the logic adapter will
        filter out any statements that are not in response to a known statement.
        """
        self.chatbot.storage.create_many([
            Statement(text='This is a lovely bog.',
                      in_response_to='This is a lovely bog.'),
            Statement(text='This is a beautiful swamp.',
                      in_response_to='This is a beautiful swamp.'),
            Statement(text='It smells like a swamp.',
                      in_response_to='It smells like a swamp.')
        ])

        statement = Statement(text='This is a lovely swamp.')
        results = list(self.search_algorithm.search(statement))

        self.assertIsLength(results, 1)
        self.assertEqual(results[0].text, 'This is a beautiful swamp.')
        self.assertGreater(results[0].confidence, 0)

    def test_different_punctuation(self):
        self.chatbot.storage.create_many([
            Statement(text='Who are you?'),
            Statement(text='Are you good?'),
            Statement(text='You are good')
        ])

        statement = Statement(text='Are you good')
        results = list(self.search_algorithm.search(statement))

        self.assertEqual(len(results), 2, msg=[r.search_text for r in results])
        # Note: the last statement in the list always has the highest confidence
        self.assertEqual(results[-1].text, 'Are you good?')
예제 #2
0
class SearchTestCase(ChatBotTestCase):
    def setUp(self):
        super().setUp()
        self.search_algorithm = IndexedTextSearch(self.chatbot)

    def test_search_no_results(self):
        """
        An exception should be raised if there is no data to return.
        """
        statement = Statement(text='What is your quest?')

        with self.assertRaises(StopIteration):
            next(self.search_algorithm.search(statement))

    def test_search_cast_to_list_no_results(self):
        """
        An empty list should be returned when the generator is
        cast to a list and there are no results to return.
        """
        statement = Statement(text='What is your quest?')

        results = list(self.search_algorithm.search(statement))

        self.assertEqual(results, [])

    def test_search_additional_parameters(self):
        """
        It should be possible to pass additional parameters in to use for searching.
        """
        self.chatbot.storage.create_many([
            Statement(text='A', conversation='test_1'),
            Statement(text='A', conversation='test_2')
        ])

        statement = Statement(text='A')

        results = list(
            self.search_algorithm.search(statement, conversation='test_1'))

        self.assertIsLength(results, 1)
        self.assertEqual(results[0].text, 'A')
        self.assertEqual(results[0].conversation, 'test_1')
예제 #3
0
    def __init__(self, name, **kwargs):
        self.name = name

        storage_adapter = kwargs.get('storage_adapter',
                                     'chatterbot.storage.SQLStorageAdapter')

        logic_adapters = kwargs.get('logic_adapters',
                                    ['chatterbot.logic.BestMatch'])

        # Check that each adapter is a valid subclass of it's respective parent
        utils.validate_adapter_class(storage_adapter, StorageAdapter)

        # Logic adapters used by the chat bot
        self.logic_adapters = []

        self.storage = utils.initialize_class(storage_adapter, **kwargs)

        primary_search_algorithm = IndexedTextSearch(self, **kwargs)
        text_search_algorithm = TextSearch(self, **kwargs)

        self.search_algorithms = {
            primary_search_algorithm.name: primary_search_algorithm,
            text_search_algorithm.name: text_search_algorithm
        }

        for adapter in logic_adapters:
            utils.validate_adapter_class(adapter, LogicAdapter)
            logic_adapter = utils.initialize_class(adapter, self, **kwargs)
            self.logic_adapters.append(logic_adapter)

        preprocessors = kwargs.get(
            'preprocessors', ['chatterbot.preprocessors.clean_whitespace'])

        self.preprocessors = []

        for preprocessor in preprocessors:
            self.preprocessors.append(utils.import_module(preprocessor))

        self.logger = kwargs.get('logger', logging.getLogger(__name__))

        # Allow the bot to save input it receives so that it can learn
        self.read_only = kwargs.get('read_only', False)
예제 #4
0
class IndexedTextSearchComparisonFunctionLevenshteinDistanceComparisonTests(
        ChatBotTestCase):
    """
    Test that the search algorithm works correctly with the
    Levenshtein distance comparison function.
    """
    def setUp(self):
        super().setUp()
        self.search_algorithm = IndexedTextSearch(
            self.chatbot,
            statement_comparison_function=comparisons.LevenshteinDistance)

    def test_get_closest_statement(self):
        """
        Note, the content of the in_response_to field for each of the
        test statements is only required because the search process will
        filter out any statements that are not in response to something.
        """
        self.chatbot.storage.create_many([
            Statement(text='What is the meaning of life?',
                      in_response_to='...'),
            Statement(text='I am Iron Man.', in_response_to='...'),
            Statement(text='What... is your quest?', in_response_to='...'),
            Statement(text='Yuck, black licorice jelly beans.',
                      in_response_to='...'),
            Statement(text='I hear you are going on a quest?',
                      in_response_to='...'),
        ])

        statement = Statement(text='What is your quest?')

        results = list(self.search_algorithm.search(statement))

        self.assertEqual(len(results), 1, msg=[r.text for r in results])
        self.assertEqual(results[0].text, 'What... is your quest?')

    def test_confidence_exact_match(self):
        self.chatbot.storage.create(text='What is your quest?',
                                    in_response_to='What is your quest?')

        statement = Statement(text='What is your quest?')
        results = list(self.search_algorithm.search(statement))

        self.assertIsLength(results, 1)
        self.assertEqual(results[0].confidence, 1)

    def test_confidence_half_match(self):
        from unittest.mock import MagicMock

        # Assume that the storage adapter returns a partial match
        self.chatbot.storage.filter = MagicMock(
            return_value=[Statement(text='xxyy')])

        statement = Statement(text='wwxx')
        results = list(self.search_algorithm.search(statement))

        self.assertIsLength(results, 1)
        self.assertEqual(results[0].confidence, 0.5)

    def test_confidence_no_match(self):
        from unittest.mock import MagicMock

        # Assume that the storage adapter returns a partial match
        self.search_algorithm.chatbot.storage.filter = MagicMock(
            return_value=[Statement(text='xxx', in_response_to='xxx')])

        statement = Statement(text='yyy')
        results = list(self.search_algorithm.search(statement))

        self.assertIsLength(results, 0)
예제 #5
0
 def setUp(self):
     super().setUp()
     self.search_algorithm = IndexedTextSearch(self.chatbot)
예제 #6
0
 def setUp(self):
     super().setUp()
     self.search_algorithm = IndexedTextSearch(
         self.chatbot,
         statement_comparison_function=comparisons.SpacySimilarity)
예제 #7
0
 def setUp(self):
     super().setUp()
     self.search_algorithm = IndexedTextSearch(
         self.chatbot,
         statement_comparison_function=comparisons.LevenshteinDistance)