def model(id): model = mlModels.query.get(id) form = PredictForm() if form.validate_on_submit(): task = predictions(data=form.data.data.filename, model_id=id) db.session.add(task) db.session.commit() s3Client.put_object(Bucket=S3Name, Key=str(task.creationdate) + form.data.data.filename, Body=form.data.data) SQS.send_message(QueueUrl=predictQueue, MessageBody=json.dumps({'id': task.pred_id})) return redirect(url_for('results', id=task.pred_id)) data = json.loads(model.data) dictionary = json.loads(model.dict) return render_template( 'model.html', form=form, model=model, date=model.creationdate.strftime("%m/%d/%Y, %H:%M:%S"), layers=dictionary['layers'], sampling=dictionary['sampling'], custom=dictionary['custom'], customDesc=dictionary['model'], dataType=data['dataType'])
def demo_heart(request): context = { "model": None, "predictform": None, "predictionresult": None, "input": None, } model = get_object_or_404(ClassificationModel, pk=2) context["model"] = model predictform = PredictForm(model.variables) context["predictform"] = predictform if request.method == "POST": predictform = PredictForm(model.variables, request.POST) if predictform.is_valid(): cd = predictform.cleaned_data prediction_result = prediction(cd, model) if prediction_result == False: messages.warning(request, "Something went wrong with the prediction.") else: context["predictionresult"] = prediction_result context["predictform"] = predictform context["input"] = cd else: messages.warning(request, "Something went wrong with the prediction.") return render(request, "app/predict.html", context)
def text_predict(request): if request.method == 'POST': form = PredictForm(request.POST) if form.is_valid(): my_dict = request.POST.dict() result = predict(my_dict) print(result) messages.success(request, {result}) form = PredictForm() return render(request, 'predict_form.html', {'form': form})
def predict(): result_LinearSVC = "" result_NuSVC = "" result_DecisionTree = "" result_sentiment = "" f1_LinearSVC, acc_LinearSVC = None, None f1_NuSVC, acc_NuSVC = None, None f1_DecisionTree, acc_DecisionTree = None, None form = PredictForm() if form.validate_on_submit(): result_LinearSVC = prediction(form.parent_text.data, form.child_text.data, 'LinearSVC') f1_LinearSVC, acc_LinearSVC = cross_validation('LinearSVC') result_NuSVC = prediction(form.parent_text.data, form.child_text.data, 'NuSVC') f1_NuSVC, acc_NuSVC = cross_validation('NuSVC') result_DecisionTree = prediction(form.parent_text.data, form.child_text.data, 'DecisionTree') f1_DecisionTree, acc_DecisionTree = cross_validation('DecisionTree') result_sentiment = sentiment_predict(form.parent_text.data, form.child_text.data) return render_template('predict.html', result_LinearSVC=result_LinearSVC, result_NuSVC=result_NuSVC, result_DecisionTree=result_DecisionTree, form=form, f1_LinearSVC=f1_LinearSVC, f1_DecisionTree=f1_DecisionTree, f1_NuSVC=f1_NuSVC, acc_LinearSVC=acc_LinearSVC, acc_DecisionTree=acc_DecisionTree, acc_NuSVC=acc_NuSVC, result_sentiment=result_sentiment) return render_template('predict.html', result_LinearSVC=result_LinearSVC, result_NuSVC=result_NuSVC, result_DecisionTree=result_DecisionTree, form=form, f1_LinearSVC=f1_LinearSVC, f1_DecisionTree=f1_DecisionTree, f1_NuSVC=f1_NuSVC, acc_LinearSVC=acc_LinearSVC, acc_DecisionTree=acc_DecisionTree, acc_NuSVC=acc_NuSVC, result_sentiment=result_sentiment)
def predict(): form = PredictForm() if request.method == 'POST': if form.validate_on_submit(): key_array = [] prediction_array = [] for key in request.files.keys(): key_array.append(key) images = request.files.getlist(key_array[0]) for img in images: filename = os.path.join(app.config['UPLOAD_FOLDER'], save_file(img)) filename_array = filename.split('\\') name = filename_array[len(filename_array) - 1].split('.')[0].split('_')[0] prediction_object = { 'name': name, 'prediction': predict_file(filename, form.project.data) } prediction_array.append(prediction_object) return render_template('predictions.html', prediction=prediction_array) return render_template('predict.html', title='Predict', form=form)
def predictdata(): form = PredictForm.new() if form.validate_on_submit(): assets_dir = os.path.join(os.path.dirname(app.instance_path), 'assets') input_data = form.datasheet.data input_filename = secure_filename(input_data.filename) model_name = form.model_name.data input_data.save(os.path.join(assets_dir, 'tempdata', input_filename)) results_array = easy_ai_prediction.prediction(input_filename, model_name) session['results'] = results_array.tolist() os.remove('C:/Users/Matt/Documents/graymatter-flask/assets/tempdata/' + input_filename) return redirect(url_for('results')) return render_template('predictdata.html', title='Predict Data', form=form)
def PredictHeartDisease(): form = PredictForm() return render_template('predict.html', title='Predict', form=form)