예제 #1
0
파일: load.py 프로젝트: VinACE/FMI-1
def map_survey(survey_filename, map_filename):
    if map_filename != '':
        survey.qa = survey.qa_map(map_filename)
    survey_name = os.path.splitext(survey_filename)[0].split('-', 1)[0].strip()
    ml_file = 'data/' + survey_filename
    survey_df = pd.read_csv(ml_file, sep=';', encoding='ISO-8859-1', low_memory=False)
    survey_df.fillna(0, inplace=True)
    field_map, col_map, header_map = survey.map_columns(survey_name, survey_df.columns)
    return field_map, col_map, header_map
예제 #2
0
def load_survey1(request, survey_filename, map_filename):
    if map_filename != '':
        survey.qa = survey.qa_map(map_filename)
    survey_name = os.path.splitext(survey_filename)[0].split('-', 1)[0].strip()
    ml_file = 'data/' + survey_filename
    converters = {}
    survey_df = pd.read_csv(ml_file,
                            sep=';',
                            encoding='ISO-8859-1',
                            low_memory=False,
                            dtype=object)
    # col_map[column]: (field, question, answer, dashboard)
    # field_map[field]: [question=0, answer=1, column=2, field_type=3)]
    field_map, col_map, header_map = survey.map_columns(
        survey_name, survey_df.columns)
    converters = {}
    for col, map in col_map.items():
        if map[3] == 'text':
            converters[col] = str
    survey_df = pd.read_csv(ml_file,
                            sep=';',
                            encoding='ISO-8859-1',
                            low_memory=False,
                            converters=converters)
    survey_df.fillna(0, inplace=True)
    survey_df.index = survey_df[field_map['resp_id'][0][2]]
    bulk_data = []
    count = 0
    total_count = 0
    for resp_id, survey_s in survey_df.iterrows():
        resp_id = survey.answer_value_to_string(
            survey_s[field_map['resp_id'][0][2]])
        blindcode = survey.answer_value_to_string(
            survey_s[field_map['blindcode'][0][2]])
        #sl = models.SurveyMap()
        #sl.resp_id = resp_id+"_"+blindcode
        #sl.survey  = survey_name
        data = {}
        #data['_id'] = resp_id+"_"+blindcode
        #data['resp_id'] = resp_id+"_"+blindcode
        #data['survey'] = survey_name
        for field, maps in field_map.items():
            # resp_id is the unique id of the record, this is already set above
            #if field == 'resp_id':
            #    continue
            # map: 0=question, 1=answer, 2=column, 3=field_type, 4=keys
            map = maps[0]
            answer_value = survey_s[map[2]]
            answer_value = survey.answer_value_to_string(answer_value)
            answer_value = survey.answer_value_encode(map[0], map[1], field,
                                                      answer_value)
            answer_values = [answer_value]
            # column mapping, no question
            if map[0] == None:
                # in case of multiple mapping search for the column that has a value
                for ix in range(1, len(maps)):
                    map = maps[ix]
                    answer_value_2 = survey_s[map[2]]
                    answer_value_2 = survey.answer_value_to_string(
                        answer_value_2)
                    answer_values.append(answer_value_2)
                    if (field == 'blindcode'):
                        if answer_value_2 != '':
                            answer_value = answer_value + '-' + answer_value_2[:
                                                                               3]
                    else:
                        if len(answer_value_2) > len(answer_value):
                            answer_value = answer_value_2
                if map[3] == 'dict':
                    answer_value = survey.answer_values_dict(
                        answer_values, map[4])
                #setattr(sl, field, answer_value)
                elastic.convert_field(data, field, map, answer_value)
            # question mapping, no answer
            elif map[1][0] == '_':
                #setattr(sl, field, answer_value)
                elastic.convert_field(data, field, map, answer_value)
            # answer mapping
            else:
                #setattr(sl, field, {map[1]: answer_value})
                #attr = getattr(sl, field)
                for ix in range(0, len(maps)):
                    map = maps[ix]
                    answer_value = survey_s[map[2]]
                    answer_value = survey.answer_value_to_string(answer_value)
                    answer_value = survey.answer_value_encode(
                        map[0], map[1], field, answer_value)
                    #attr[map[1]] = answer_value
                    ##attr.append({map[1]: answer_value})
                    elastic.convert_field(data, field, map, answer_value)
        #data = elastic.convert_for_bulk(sl, 'update')
        survey.map_header(request, survey_name, data)
        data['_id'] = survey.map_id(survey_name, data)
        data = elastic.convert_data_for_bulk(data, 'survey', 'survey',
                                             'update')
        bulk_data.append(data)
        count = count + 1
        if count > 100:
            bulk(models.client, actions=bulk_data, stats_only=True)
            total_count = total_count + count
            print("crawl_survey: written another batch, total written {0:d}".
                  format(total_count))
            bulk_data = []
            count = 1
            #break

    bulk(models.client, actions=bulk_data, stats_only=True)
    pass