"model_file_name": model_file_name, "check_status_only": False, "model_class_name": model_class_name, "model_class_file": model_class_file, "endpoint_url": s3_url, "access_key_id": s3_username, "secret_access_key": s3_password, "training_results_bucket": bucket_name, "training_id": model_id, } # Deploy model with Knative route. if cleanup: if local_cluster_deployment: # Using K8s api metrics = run_safe(formData, "DELETE") else: response = requests.delete(kfserving_url, params=formData) metrics = response.json() print("Successfully cleanup old deployments") else: if local_cluster_deployment: # Using K8s api metrics = run_safe(formData, "POST") else: response = requests.post(kfserving_url, json=formData) metrics = response.json() # Print out the necessary endpoints and debugging outputs. metrics[ 'Prediction_Host'] = deployment_name + "." + namespace + "." + knative_custom_domain
f.close() model_id = args.model_id deployment_name = args.deployment_name model_class_name = args.model_class_name model_class_file = args.model_class_file serving_image = args.serving_image formData = { "public_ip": seldon_ip, "aws_endpoint_url": s3_url, "aws_access_key_id": s3_access_key_id, "aws_secret_access_key": s3_secret_access_key, "training_results_bucket": bucket_name, "model_file_name": "model.pt", "deployment_name": deployment_name, "training_id": model_id, "container_image": serving_image, "check_status_only": False, "model_class_name": model_class_name, "model_class_file": model_class_file } metrics = run_safe(formData, "POST") print(metrics) with open('/tmp/deployment_result.txt', "w") as report: report.write(json.dumps(metrics)) print('\nThe Model is running at ' + metrics['deployment_url'])