예제 #1
0
def _gen_commitment(state: State, in_amount: int) -> tuple[Sc25519, Ge25519]:
    """
    Computes Pedersen commitment - pseudo outs
    Here is slight deviation from the original protocol.
    We want that \\sum Alpha = \\sum A_{i,j} where A_{i,j} is a mask from range proof for output i, bit j.

    Previously this was computed in such a way that Alpha_{last} = \\sum A{i,j} - \\sum_{i=0}^{last-1} Alpha
    But we would prefer to compute commitment before range proofs so alphas are generated completely randomly
    and the last A mask is computed in this special way.
    Returns pseudo_out
    """
    alpha = crypto.random_scalar()
    state.sumpouts_alphas = crypto.sc_add(state.sumpouts_alphas, alpha)
    return alpha, crypto.gen_commitment(alpha, in_amount)
예제 #2
0
def verify_bp(bp_proof, amounts, masks):
    """Verifies Bulletproof"""
    from apps.monero.xmr import bulletproof as bp

    if amounts:
        bp_proof.V = []
        for i in range(len(amounts)):
            C = crypto.gen_commitment(masks[i], amounts[i])
            crypto.scalarmult_into(C, C, crypto.sc_inv_eight())
            bp_proof.V.append(crypto.encodepoint(C))

    bpi = bp.BulletProofBuilder()
    res = bpi.verify(bp_proof)
    gc.collect()
    return res
예제 #3
0
def _get_ecdh_info_and_out_pk(
        state: State, tx_out_key: Ge25519, amount: int, mask: Sc25519,
        amount_key: Sc25519) -> Tuple[bytes, bytes, bytes]:
    """
    Calculates the Pedersen commitment C = aG + bH and returns it as CtKey.
    Also encodes the two items - `mask` and `amount` - into ecdh info,
    so the recipient is able to reconstruct the commitment.
    """
    out_pk_dest = crypto.encodepoint(tx_out_key)
    out_pk_commitment = crypto.encodepoint(crypto.gen_commitment(mask, amount))
    crypto.sc_add_into(state.sumout, state.sumout, mask)
    ecdh_info = _ecdh_encode(amount, crypto.encodeint(amount_key))

    # Manual ECDH info serialization
    ecdh_info_bin = _serialize_ecdh(ecdh_info)
    gc.collect()

    return out_pk_dest, out_pk_commitment, ecdh_info_bin
예제 #4
0
def _get_ecdh_info_and_out_pk(state: State, tx_out_key, amount, mask,
                              amount_key):
    """
    Calculates the Pedersen commitment C = aG + bH and returns it as CtKey.
    Also encodes the two items - `mask` and `amount` - into ecdh info,
    so the recipient is able to reconstruct the commitment.
    """
    out_pk_dest = crypto.encodepoint(tx_out_key)
    out_pk_commitment = crypto.encodepoint(crypto.gen_commitment(mask, amount))
    crypto.sc_add_into(state.sumout, state.sumout, mask)

    # masking of mask and amount
    ecdh_info = _ecdh_encode(mask, amount, crypto.encodeint(amount_key),
                             state.is_bulletproof_v2())

    # Manual ECDH info serialization
    ecdh_info_bin = _serialize_ecdh(ecdh_info, state.is_bulletproof_v2())
    gc.collect()

    return out_pk_dest, out_pk_commitment, ecdh_info_bin
예제 #5
0
def _get_ecdh_info_and_out_pk(state: State, tx_out_key, amount, mask,
                              amount_key):
    """
    Calculates the Pedersen commitment C = aG + bH and returns it as CtKey.
    Also encodes the two items - `mask` and `amount` - into ecdh info,
    so the recipient is able to reconstruct the commitment.
    """
    out_pk_dest = crypto.encodepoint(tx_out_key)
    out_pk_commitment = crypto.encodepoint(crypto.gen_commitment(mask, amount))

    state.sumout = crypto.sc_add(state.sumout, mask)
    state.output_sk_masks.append(mask)

    # masking of mask and amount
    ecdh_info = _ecdh_encode(mask, amount, crypto.encodeint(amount_key))

    # Manual ECDH info serialization
    ecdh_info_bin = bytearray(64)
    utils.memcpy(ecdh_info_bin, 0, ecdh_info.mask, 0, 32)
    utils.memcpy(ecdh_info_bin, 32, ecdh_info.amount, 0, 32)
    gc.collect()

    return out_pk_dest, out_pk_commitment, ecdh_info_bin
async def sign_input(
    state: State,
    src_entr: MoneroTransactionSourceEntry,
    vini_bin: bytes,
    vini_hmac: bytes,
    pseudo_out: bytes,
    pseudo_out_hmac: bytes,
    pseudo_out_alpha_enc: bytes,
    spend_enc: bytes,
    orig_idx: int,
) -> MoneroTransactionSignInputAck:
    """
    :param state: transaction state
    :param src_entr: Source entry
    :param vini_bin: tx.vin[i] for the transaction. Contains key image, offsets, amount (usually zero)
    :param vini_hmac: HMAC for the tx.vin[i] as returned from Trezor
    :param pseudo_out: Pedersen commitment for the current input, uses pseudo_out_alpha
                       as a mask. Only applicable for RCTTypeSimple.
    :param pseudo_out_hmac: HMAC for pseudo_out
    :param pseudo_out_alpha_enc: alpha mask used in pseudo_out, only applicable for RCTTypeSimple. Encrypted.
    :param spend_enc: one time address spending private key. Encrypted.
    :param orig_idx: original index of the src_entr before sorting (HMAC check)
    :return: Generated signature MGs[i]
    """
    await confirms.transaction_step(state, state.STEP_SIGN,
                                    state.current_input_index + 1)

    state.current_input_index += 1
    if state.last_step not in (state.STEP_ALL_OUT, state.STEP_SIGN):
        raise ValueError("Invalid state transition")
    if state.current_input_index >= state.input_count:
        raise ValueError("Invalid inputs count")
    if pseudo_out is None:
        raise ValueError("SimpleRCT requires pseudo_out but none provided")
    if pseudo_out_alpha_enc is None:
        raise ValueError(
            "SimpleRCT requires pseudo_out's mask but none provided")

    input_position = (state.source_permutation[state.current_input_index]
                      if state.client_version <= 1 else orig_idx)
    mods = utils.unimport_begin()

    # Check input's HMAC
    from apps.monero.signing import offloading_keys

    vini_hmac_comp = await offloading_keys.gen_hmac_vini(
        state.key_hmac, src_entr, vini_bin, input_position)
    if not crypto.ct_equals(vini_hmac_comp, vini_hmac):
        raise ValueError("HMAC is not correct")

    # Key image sorting check - permutation correctness
    cur_ki = offloading_keys.get_ki_from_vini(vini_bin)
    if state.current_input_index > 0 and state.last_ki <= cur_ki:
        raise ValueError("Key image order invalid")

    state.last_ki = cur_ki if state.current_input_index < state.input_count else None
    del (cur_ki, vini_bin, vini_hmac, vini_hmac_comp)

    gc.collect()
    state.mem_trace(1, True)

    from apps.monero.xmr.crypto import chacha_poly

    pseudo_out_alpha = crypto.decodeint(
        chacha_poly.decrypt_pack(
            offloading_keys.enc_key_txin_alpha(state.key_enc, input_position),
            bytes(pseudo_out_alpha_enc),
        ))

    # Last pseudo_out is recomputed so mask sums hold
    if input_position + 1 == state.input_count:
        # Recompute the lash alpha so the sum holds
        state.mem_trace("Correcting alpha")
        alpha_diff = crypto.sc_sub(state.sumout, state.sumpouts_alphas)
        crypto.sc_add_into(pseudo_out_alpha, pseudo_out_alpha, alpha_diff)
        pseudo_out_c = crypto.gen_commitment(pseudo_out_alpha,
                                             state.input_last_amount)

    else:
        if input_position + 1 == state.input_count:
            utils.ensure(crypto.sc_eq(state.sumpouts_alphas, state.sumout),
                         "Sum eq error")

        # both pseudo_out and its mask were offloaded so we need to
        # validate pseudo_out's HMAC and decrypt the alpha
        pseudo_out_hmac_comp = crypto.compute_hmac(
            offloading_keys.hmac_key_txin_comm(state.key_hmac, input_position),
            pseudo_out,
        )
        if not crypto.ct_equals(pseudo_out_hmac_comp, pseudo_out_hmac):
            raise ValueError("HMAC is not correct")

        pseudo_out_c = crypto.decodepoint(pseudo_out)

    state.mem_trace(2, True)

    # Spending secret
    spend_key = crypto.decodeint(
        chacha_poly.decrypt_pack(
            offloading_keys.enc_key_spend(state.key_enc, input_position),
            bytes(spend_enc),
        ))

    del (
        offloading_keys,
        chacha_poly,
        pseudo_out,
        pseudo_out_hmac,
        pseudo_out_alpha_enc,
        spend_enc,
    )
    utils.unimport_end(mods)
    state.mem_trace(3, True)

    # Basic setup, sanity check
    from apps.monero.xmr.serialize_messages.tx_ct_key import CtKey

    index = src_entr.real_output
    input_secret_key = CtKey(spend_key, crypto.decodeint(src_entr.mask))

    # Private key correctness test
    utils.ensure(
        crypto.point_eq(
            crypto.decodepoint(
                src_entr.outputs[src_entr.real_output].key.dest),
            crypto.scalarmult_base(input_secret_key.dest),
        ),
        "Real source entry's destination does not equal spend key's",
    )
    utils.ensure(
        crypto.point_eq(
            crypto.decodepoint(
                src_entr.outputs[src_entr.real_output].key.commitment),
            crypto.gen_commitment(input_secret_key.mask, src_entr.amount),
        ),
        "Real source entry's mask does not equal spend key's",
    )

    state.mem_trace(4, True)

    from apps.monero.xmr import mlsag

    mg_buffer = []
    ring_pubkeys = [x.key for x in src_entr.outputs if x]
    utils.ensure(len(ring_pubkeys) == len(src_entr.outputs), "Invalid ring")
    del src_entr

    state.mem_trace(5, True)

    if state.hard_fork and state.hard_fork >= 13:
        state.mem_trace("CLSAG")
        mlsag.generate_clsag_simple(
            state.full_message,
            ring_pubkeys,
            input_secret_key,
            pseudo_out_alpha,
            pseudo_out_c,
            index,
            mg_buffer,
        )
    else:
        mlsag.generate_mlsag_simple(
            state.full_message,
            ring_pubkeys,
            input_secret_key,
            pseudo_out_alpha,
            pseudo_out_c,
            index,
            mg_buffer,
        )

    del (CtKey, input_secret_key, pseudo_out_alpha, mlsag, ring_pubkeys)
    state.mem_trace(6, True)

    from trezor.messages.MoneroTransactionSignInputAck import (
        MoneroTransactionSignInputAck, )

    # Encrypt signature, reveal once protocol finishes OK
    if state.client_version >= 3:
        utils.unimport_end(mods)
        state.mem_trace(7, True)
        mg_buffer = _protect_signature(state, mg_buffer)

    state.mem_trace(8, True)
    state.last_step = state.STEP_SIGN
    return MoneroTransactionSignInputAck(
        signature=mg_buffer, pseudo_out=crypto.encodepoint(pseudo_out_c))
예제 #7
0
async def sign_input(
    state: State,
    src_entr: MoneroTransactionSourceEntry,
    vini_bin: bytes,
    vini_hmac: bytes,
    pseudo_out: bytes,
    pseudo_out_hmac: bytes,
    pseudo_out_alpha_enc: bytes,
    spend_enc: bytes,
):
    """
    :param state: transaction state
    :param src_entr: Source entry
    :param vini_bin: tx.vin[i] for the transaction. Contains key image, offsets, amount (usually zero)
    :param vini_hmac: HMAC for the tx.vin[i] as returned from Trezor
    :param pseudo_out: Pedersen commitment for the current input, uses pseudo_out_alpha
                       as a mask. Only applicable for RCTTypeSimple.
    :param pseudo_out_hmac: HMAC for pseudo_out
    :param pseudo_out_alpha_enc: alpha mask used in pseudo_out, only applicable for RCTTypeSimple. Encrypted.
    :param spend_enc: one time address spending private key. Encrypted.
    :return: Generated signature MGs[i]
    """
    await confirms.transaction_step(state, state.STEP_SIGN,
                                    state.current_input_index + 1)

    state.current_input_index += 1
    if state.current_input_index >= state.input_count:
        raise ValueError("Invalid inputs count")
    if pseudo_out is None:
        raise ValueError("SimpleRCT requires pseudo_out but none provided")
    if pseudo_out_alpha_enc is None:
        raise ValueError(
            "SimpleRCT requires pseudo_out's mask but none provided")

    input_position = state.source_permutation[state.current_input_index]
    mods = utils.unimport_begin()

    # Check input's HMAC
    from apps.monero.signing import offloading_keys

    vini_hmac_comp = await offloading_keys.gen_hmac_vini(
        state.key_hmac, src_entr, vini_bin, input_position)
    if not crypto.ct_equals(vini_hmac_comp, vini_hmac):
        raise ValueError("HMAC is not correct")

    gc.collect()
    state.mem_trace(1, True)

    from apps.monero.xmr.crypto import chacha_poly

    pseudo_out_alpha = crypto.decodeint(
        chacha_poly.decrypt_pack(
            offloading_keys.enc_key_txin_alpha(state.key_enc, input_position),
            bytes(pseudo_out_alpha_enc),
        ))

    # Last pseud_out is recomputed so mask sums hold
    if state.is_det_mask() and input_position + 1 == state.input_count:
        # Recompute the lash alpha so the sum holds
        state.mem_trace("Correcting alpha")
        alpha_diff = crypto.sc_sub(state.sumout, state.sumpouts_alphas)
        crypto.sc_add_into(pseudo_out_alpha, pseudo_out_alpha, alpha_diff)
        pseudo_out_c = crypto.gen_commitment(pseudo_out_alpha,
                                             state.input_last_amount)

    else:
        if input_position + 1 == state.input_count:
            utils.ensure(crypto.sc_eq(state.sumpouts_alphas, state.sumout),
                         "Sum eq error")

        # both pseudo_out and its mask were offloaded so we need to
        # validate pseudo_out's HMAC and decrypt the alpha
        pseudo_out_hmac_comp = crypto.compute_hmac(
            offloading_keys.hmac_key_txin_comm(state.key_hmac, input_position),
            pseudo_out,
        )
        if not crypto.ct_equals(pseudo_out_hmac_comp, pseudo_out_hmac):
            raise ValueError("HMAC is not correct")

        pseudo_out_c = crypto.decodepoint(pseudo_out)

    state.mem_trace(2, True)

    # Spending secret
    spend_key = crypto.decodeint(
        chacha_poly.decrypt_pack(
            offloading_keys.enc_key_spend(state.key_enc, input_position),
            bytes(spend_enc),
        ))

    del (
        offloading_keys,
        chacha_poly,
        pseudo_out,
        pseudo_out_hmac,
        pseudo_out_alpha_enc,
        spend_enc,
    )
    utils.unimport_end(mods)
    state.mem_trace(3, True)

    from apps.monero.xmr.serialize_messages.ct_keys import CtKey

    # Basic setup, sanity check
    index = src_entr.real_output
    input_secret_key = CtKey(dest=spend_key,
                             mask=crypto.decodeint(src_entr.mask))
    kLRki = None  # for multisig: src_entr.multisig_kLRki

    # Private key correctness test
    utils.ensure(
        crypto.point_eq(
            crypto.decodepoint(
                src_entr.outputs[src_entr.real_output].key.dest),
            crypto.scalarmult_base(input_secret_key.dest),
        ),
        "Real source entry's destination does not equal spend key's",
    )
    utils.ensure(
        crypto.point_eq(
            crypto.decodepoint(
                src_entr.outputs[src_entr.real_output].key.commitment),
            crypto.gen_commitment(input_secret_key.mask, src_entr.amount),
        ),
        "Real source entry's mask does not equal spend key's",
    )

    state.mem_trace(4, True)

    from apps.monero.xmr import mlsag

    mg_buffer = []
    ring_pubkeys = [x.key for x in src_entr.outputs]
    del src_entr

    mlsag.generate_mlsag_simple(
        state.full_message,
        ring_pubkeys,
        input_secret_key,
        pseudo_out_alpha,
        pseudo_out_c,
        kLRki,
        index,
        mg_buffer,
    )

    del (input_secret_key, pseudo_out_alpha, mlsag, ring_pubkeys)
    state.mem_trace(5, True)

    from trezor.messages.MoneroTransactionSignInputAck import (
        MoneroTransactionSignInputAck, )

    return MoneroTransactionSignInputAck(
        signature=mg_buffer, pseudo_out=crypto.encodepoint(pseudo_out_c))
예제 #8
0
async def sign_input(
    state: State,
    src_entr: MoneroTransactionSourceEntry,
    vini_bin: bytes,
    vini_hmac: bytes,
    pseudo_out: bytes,
    pseudo_out_hmac: bytes,
    pseudo_out_alpha_enc: bytes,
    spend_enc: bytes,
):
    """
    :param state: transaction state
    :param src_entr: Source entry
    :param vini_bin: tx.vin[i] for the transaction. Contains key image, offsets, amount (usually zero)
    :param vini_hmac: HMAC for the tx.vin[i] as returned from Trezor
    :param pseudo_out: Pedersen commitment for the current input, uses pseudo_out_alpha
                       as a mask. Only applicable for RCTTypeSimple.
    :param pseudo_out_hmac: HMAC for pseudo_out
    :param pseudo_out_alpha_enc: alpha mask used in pseudo_out, only applicable for RCTTypeSimple. Encrypted.
    :param spend_enc: one time address spending private key. Encrypted.
    :return: Generated signature MGs[i]
    """
    from apps.monero.signing import offloading_keys

    await confirms.transaction_step(state.ctx, state.STEP_SIGN,
                                    state.current_input_index + 1,
                                    state.input_count)

    state.current_input_index += 1
    if state.current_input_index >= state.input_count:
        raise ValueError("Invalid inputs count")
    if state.rct_type == RctType.Simple and pseudo_out is None:
        raise ValueError("SimpleRCT requires pseudo_out but none provided")
    if state.rct_type == RctType.Simple and pseudo_out_alpha_enc is None:
        raise ValueError(
            "SimpleRCT requires pseudo_out's mask but none provided")
    if state.current_input_index >= 1 and not state.rct_type == RctType.Simple:
        raise ValueError("Two and more inputs must imply SimpleRCT")

    input_position = state.source_permutation[state.current_input_index]

    # Check input's HMAC
    vini_hmac_comp = await offloading_keys.gen_hmac_vini(
        state.key_hmac, src_entr, vini_bin, input_position)
    if not crypto.ct_equals(vini_hmac_comp, vini_hmac):
        raise ValueError("HMAC is not correct")

    gc.collect()
    state.mem_trace(1)

    if state.rct_type == RctType.Simple:
        # both pseudo_out and its mask were offloaded so we need to
        # validate pseudo_out's HMAC and decrypt the alpha
        pseudo_out_hmac_comp = crypto.compute_hmac(
            offloading_keys.hmac_key_txin_comm(state.key_hmac, input_position),
            pseudo_out,
        )
        if not crypto.ct_equals(pseudo_out_hmac_comp, pseudo_out_hmac):
            raise ValueError("HMAC is not correct")

        gc.collect()
        state.mem_trace(2)

        from apps.monero.xmr.crypto import chacha_poly

        pseudo_out_alpha = crypto.decodeint(
            chacha_poly.decrypt_pack(
                offloading_keys.enc_key_txin_alpha(state.key_enc,
                                                   input_position),
                bytes(pseudo_out_alpha_enc),
            ))
        pseudo_out_c = crypto.decodepoint(pseudo_out)

    # Spending secret
    from apps.monero.xmr.crypto import chacha_poly
    from apps.monero.xmr.serialize_messages.ct_keys import CtKey

    spend_key = crypto.decodeint(
        chacha_poly.decrypt_pack(
            offloading_keys.enc_key_spend(state.key_enc, input_position),
            bytes(spend_enc),
        ))

    gc.collect()
    state.mem_trace(3)

    # Basic setup, sanity check
    index = src_entr.real_output
    input_secret_key = CtKey(dest=spend_key,
                             mask=crypto.decodeint(src_entr.mask))
    kLRki = None  # for multisig: src_entr.multisig_kLRki

    # Private key correctness test
    utils.ensure(
        crypto.point_eq(
            crypto.decodepoint(
                src_entr.outputs[src_entr.real_output].key.dest),
            crypto.scalarmult_base(input_secret_key.dest),
        ),
        "Real source entry's destination does not equal spend key's",
    )
    utils.ensure(
        crypto.point_eq(
            crypto.decodepoint(
                src_entr.outputs[src_entr.real_output].key.commitment),
            crypto.gen_commitment(input_secret_key.mask, src_entr.amount),
        ),
        "Real source entry's mask does not equal spend key's",
    )

    gc.collect()
    state.mem_trace(4)

    from apps.monero.xmr import mlsag

    if state.rct_type == RctType.Simple:
        ring_pubkeys = [x.key for x in src_entr.outputs]
        mg = mlsag.generate_mlsag_simple(
            state.full_message,
            ring_pubkeys,
            input_secret_key,
            pseudo_out_alpha,
            pseudo_out_c,
            kLRki,
            index,
        )

    else:
        # Full RingCt, only one input
        txn_fee_key = crypto.scalarmult_h(state.fee)
        ring_pubkeys = [[x.key] for x in src_entr.outputs]
        mg = mlsag.generate_mlsag_full(
            state.full_message,
            ring_pubkeys,
            [input_secret_key],
            state.output_sk_masks,
            state.output_pk_commitments,
            kLRki,
            index,
            txn_fee_key,
        )

    gc.collect()
    state.mem_trace(5)

    # Encode
    mgs = _recode_msg([mg])

    gc.collect()
    state.mem_trace(6)

    from trezor.messages.MoneroTransactionSignInputAck import (
        MoneroTransactionSignInputAck, )

    return MoneroTransactionSignInputAck(
        signature=serialize.dump_msg_gc(mgs[0], preallocate=488))