def test_overlap_on_not_ones(): inp = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0] settings = SpatialSettings(debug = False, min_overlap = 1, desired_local_activity = 4, connected_pct = 1, connected_perm = 0.01, xinput = 3, yinput = 3, potential_radius = 4, xdimension = 3, ydimension = 3, initial_inhibition_radius = 1, permanence_inc = 0.1, permanence_dec = 0.1, max_boost = 2, min_duty_cycle_fraction = 0.2) settings.debug = True settings.min_overlap = 1 settings.desired_local_activity = 1 settings.connected_pct = 1 settings.xinput = len(inp) settings.yinput = 1 settings.potential_radius = 2 settings.xdimension = 4 settings.ydimension = 1 r = Region(settings, SimpleMapper()) overlaps = r.update_overlaps(r.get_columns(), inp) groundtruth = [3, 2, 3, 2] for i in range(len(groundtruth)): assert overlaps[i] == groundtruth[i]
def test_ladder(): # FileOutputStream fos=new FileOutputStream("out.txt") # PrintWriter pw=new PrintWriter(fos) # FileOutputStream fos_in=new FileOutputStream("in.txt") # PrintWriter pw_in=new PrintWriter(fos_in) w = 15 h = 15 begx = 0 begy = 0 step_size = 5 map = [[0 for j in range(h)] for i in range(w)] inp = [0 for i in range(h * w)] STEPS = 5 TOTAL_STEPS = 1000 STEP_SIZE = STEPS setting = SpatialSettings(debug = False, min_overlap = 1, desired_local_activity = 4, connected_pct = 1, connected_perm = 0.01, xinput = 3, yinput = 3, potential_radius = 4, xdimension = 3, ydimension = 3, initial_inhibition_radius = 1, permanence_inc = 0.1, permanence_dec = 0.1, max_boost = 2, min_duty_cycle_fraction = 0.2) setting.debug = True setting.min_overlap = 1 setting.desired_local_activity = 1 setting.connected_pct = 1 # setting.connectedPerm=0.01 setting.xinput = w setting.yinput = h setting.potential_radius = 2 setting.xdimension = 3 setting.ydimension = 3 setting.initial_inhibition_radius = 2 # pw.print(setting.xDimension + " ") # pw.print(setting.yDimension + " ") # pw.print(TOTAL_STEPS) # pw.println() # # pw_in.print(setting.xDimension + " ") # pw_in.print(setting.yDimension + " ") # pw_in.print(TOTAL_STEPS) # pw_in.println() r = Region(setting, VerySimpleMapper()) x = begx y = begy for i in range(x, x + step_size): for j in range(y, y + step_size): map[i][j] = 1 for step in range(TOTAL_STEPS): print("DATA:\n") index = 0 for k in range(w): for m in range(h): inp[index] = map[k][m] # pw_in.print(in[index]) print(str(inp[index]) + " ", end="", flush=True) index += 1 print() # pw_in.println() print() # pw_in.println() for i in range(x, x + step_size): for j in range(y, y + step_size): if i < len(map) and j < len(map[0]): map[i][j] = 0 x = x + STEP_SIZE y = y + STEP_SIZE if x > w: x = 0 y = 0 for i in range(x, x + step_size): for j in range(y, y + step_size): if i < len(map) and j < len(map[0]): map[i][j] = 1 for c in r.get_columns(): c.set_is_active(False) ov = r.update_overlaps(r.get_columns(), inp) r.inhibition_phase(r.get_columns(), ov) r.learning_phase(r.get_columns(), inp, ov) cols = r.get_columns() for i in range(setting.xdimension): for j in range(setting.ydimension): state = 1 if find_by_colxy(cols, i, j).get_is_active() else 0 print(str(state) + " ", end="", flush=True) # pw.print(state) # pw.print(" ") print()
def test_debug_false(): setting = SpatialSettings(debug = False, min_overlap = 1, desired_local_activity = 4, connected_pct = 1, connected_perm = 0.01, xinput = 3, yinput = 3, potential_radius = 4, xdimension = 3, ydimension = 3, initial_inhibition_radius = 1, permanence_inc = 0.1, permanence_dec = 0.1, max_boost = 2, min_duty_cycle_fraction = 0.2) setting.debug = False setting.min_overlap = 1 setting.desired_local_activity = 1 setting.connected_pct = 1 setting.xinput = 4 setting.yinput = 4 setting.potential_radius = 2 setting.xdimension = 4 setting.ydimension = 1 setting.initial_inhibition_radius = 2 r = Region(setting, SimpleMapper()) inp = [[1, 0, 1, 0], [1, 0, 1, 0], [1, 0, 1, 0], [1, 0, 1, 0]] res = r.step_forward(inp) print(res) assert len(list(filter(lambda x: x[0] == True, res)))>0
def test_out_prediction(): setting = SpatialSettings(debug = False, min_overlap = 1, desired_local_activity = 4, connected_pct = 1, connected_perm = 0.01, xinput = 3, yinput = 3, potential_radius = 4, xdimension = 3, ydimension = 3, initial_inhibition_radius = 1, permanence_inc = 0.1, permanence_dec = 0.1, max_boost = 2, min_duty_cycle_fraction = 0.2) setting.debug = True setting.min_overlap = 1 setting.desired_local_activity = 1 setting.connected_pct = 1 setting.xinput = 4 setting.yinput = 4 setting.potential_radius = 2 setting.xdimension = 4 setting.ydimension = 1 setting.initial_inhibition_radius = 2 r = Region(setting, SimpleMapper()) inp = [[1, 0, 1, 0], [1, 0, 1, 0], [1, 0, 1, 0], [1, 0, 1, 0]] r.step_forward(inp) res = r.out_prediction([[1, 0, 1, 0]]) # print(res) for i in range(len(res)): for j in range(len(res[0])): if inp[i][j] ==1: assert res[i][j] > 0
def test_htm_constructuion(): setting = SpatialSettings(debug = False, min_overlap = 1, desired_local_activity = 4, connected_pct = 1, connected_perm = 0.01, xinput = 3, yinput = 3, potential_radius = 4, xdimension = 3, ydimension = 3, initial_inhibition_radius = 1, permanence_inc = 0.1, permanence_dec = 0.1, max_boost = 2, min_duty_cycle_fraction = 0.2) setting.debug = True setting.min_overlap = 1 setting.desired_local_activity = 1 setting.connected_pct = 1 setting.xinput = 5 setting.yinput = 1 setting.potential_radius = 2 setting.xdimension = 4 setting.ydimension = 1 setting.initial_inhibition_radius = 2 r = Region(setting, SimpleMapper()) assert len(r.get_columns()) == 4 assert r.get_input_h() == 1 assert r.get_input_w() == 5 assert len(r.get_columns()[0].get_neighbors()) == 2 v = r.get_columns()[r.get_columns()[0].get_neighbors()[0]].get_coord() assert v[0] == 1.0 and v[1] == 0.0
def test_inhibition_phase(): inp = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0] settings = SpatialSettings(debug = False, min_overlap = 1, desired_local_activity = 4, connected_pct = 1, connected_perm = 0.01, xinput = 3, yinput = 3, potential_radius = 4, xdimension = 3, ydimension = 3, initial_inhibition_radius = 1, permanence_inc = 0.1, permanence_dec = 0.1, max_boost = 2, min_duty_cycle_fraction = 0.2) settings.debug = True settings.min_overlap = 1 settings.desired_local_activity = 1 settings.connected_pct = 1 settings.xinput = len(inp) settings.yinput = 1 settings.potential_radius = 2 settings.xdimension = 4 settings.ydimension = 1 settings.initial_inhibition_radius = 1 r = Region(settings, SimpleMapper()) overlaps = r.update_overlaps(r.get_columns(), inp) cols = r.inhibition_phase(r.get_columns(), overlaps) assert len(cols) == 2 r = Region(settings, SimpleMapper()) overlaps = r.update_overlaps(r.get_columns(), inp) r.inhibition_phase(r.get_columns(), overlaps) # ожидаем разные результаты теста из-за рандомного шафла cols = r.inhibition_phase(r.get_columns(), overlaps) assert len(cols) == 2 cols = r.inhibition_phase(r.get_columns(), overlaps) assert len(cols) == 2 cols = r.inhibition_phase(r.get_columns(), overlaps) assert len(cols) == 2 cols = r.inhibition_phase(r.get_columns(), overlaps) assert len(cols) == 2
def testUpdateSynapses(): inp = [1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] settings = SpatialSettings(debug = False, min_overlap = 1, desired_local_activity = 4, connected_pct = 1, connected_perm = 0.01, xinput = 3, yinput = 3, potential_radius = 4, xdimension = 3, ydimension = 3, initial_inhibition_radius = 1, permanence_inc = 0.1, permanence_dec = 0.1, max_boost = 2, min_duty_cycle_fraction = 0.2) settings.debug = True settings.min_overlap = 1 settings.desired_local_activity = 1 settings.connected_pct = 1 settings.xinput = len(inp) settings.yinput = 1 settings.potential_radius = 2 settings.xdimension = 4 settings.ydimension = 1 settings.initial_inhibition_radius = 1 settings.permanence_inc = 0.2 settings.permanence_dec = 0.2 r = Region(settings, SimpleMapper()) overlaps = r.update_overlaps(r.get_columns(), inp) r.inhibition_phase(r.get_columns(), overlaps) r.get_columns()[0].get_potential_synapses().get(4).set_permanence(0.5) r.update_synapses(r.get_columns(), inp) v = r.get_columns()[0].get_potential_synapses().get(4).get_permanence() assert v == 0.7 r.get_columns()[0].get_potential_synapses().get(5).set_permanence(0.5) r.update_synapses(r.get_columns(), inp) v = r.get_columns()[0].get_potential_synapses().get(5).get_permanence() assert v == 0.3
def test_update_active_duty_cycle(): inp = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] settings = SpatialSettings(debug = False, min_overlap = 1, desired_local_activity = 4, connected_pct = 1, connected_perm = 0.01, xinput = 3, yinput = 3, potential_radius = 4, xdimension = 3, ydimension = 3, initial_inhibition_radius = 1, permanence_inc = 0.1, permanence_dec = 0.1, max_boost = 2, min_duty_cycle_fraction = 0.2) settings.debug = True settings.min_overlap = 1 settings.desired_local_activity = 1 settings.connected_pct = 1 settings.xinput = len(inp) settings.yinput = 1 settings.potential_radius = 2 settings.xdimension = 4 settings.ydimension = 1 settings.initial_inhibition_radius = 1 r = Region(settings, SimpleMapper()) overlaps = r.update_overlaps(r.get_columns(), inp) r.inhibition_phase(r.get_columns(), overlaps) r.update_active_duty_cycle(r.get_columns()) r.inhibition_phase(r.get_columns(), overlaps) r.update_active_duty_cycle(r.get_columns()) r.inhibition_phase(r.get_columns(), overlaps) r.update_active_duty_cycle(r.get_columns()) r.inhibition_phase(r.get_columns(), overlaps) r.update_active_duty_cycle(r.get_columns()) assert len(r.get_active_duty_cycles()) == len(r.get_columns()) assert r.get_active_duty_cycles()[0] == 4 inp = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0] r = Region(settings, SimpleMapper()) overlaps = r.update_overlaps(r.get_columns(), inp) r.inhibition_phase(r.get_columns(), overlaps) r.update_active_duty_cycle(r.get_columns()) r.inhibition_phase(r.get_columns(), overlaps) r.update_active_duty_cycle(r.get_columns()) r.inhibition_phase(r.get_columns(), overlaps) r.update_active_duty_cycle(r.get_columns()) r.inhibition_phase(r.get_columns(), overlaps) r.update_active_duty_cycle(r.get_columns()) assert len(r.get_active_duty_cycles()) == len(r.get_columns()) assert r.get_active_duty_cycles()[0] == 0 assert r.get_active_duty_cycles()[1] == 3 assert r.get_active_duty_cycles()[2] == 3 assert r.get_active_duty_cycles()[3] == 2