def score(submission, job_id): """ Dispatches the scoring task for the given submission to an appropriate compute worker. submission: The CompetitionSubmission object. job_id: The job ID used to track the progress of the evaluation. """ # Loads the computation state. state = {} if len(submission.execution_key) > 0: state = json.loads(submission.execution_key) has_generated_predictions = 'predict' in state # Generate metadata-only bundle describing the inputs. Reference data is an optional # dataset provided by the competition organizer. Results are provided by the participant # either indirectly (has_generated_predictions is True i.e. participant provides a program # which is run to generate results) ordirectly (participant uploads results directly). lines = [] ref_value = submission.phase.reference_data.name if len(ref_value) > 0: lines.append("ref: %s" % ref_value) res_value = submission.prediction_output_file.name if has_generated_predictions else submission.file.name if len(res_value) > 0: lines.append("res: %s" % res_value) else: raise ValueError("Results are missing.") submission.inputfile.save('input.txt', ContentFile('\n'.join(lines))) # Generate metadata-only bundle describing the computation. lines = [] program_value = submission.phase.scoring_program.name if len(program_value) > 0: lines.append("program: %s" % program_value) else: raise ValueError("Program is missing.") lines.append("input: %s" % submission.inputfile.name) lines.append("stdout: %s" % submission_stdout_filename(submission)) lines.append("stderr: %s" % submission_stderr_filename(submission)) submission.runfile.save('run.txt', ContentFile('\n'.join(lines))) # Create stdout.txt & stderr.txt if has_generated_predictions == False: username = submission.participant.user.username lines = ["Standard output for submission #{0} by {1}.".format(submission.submission_number, username), ""] submission.stdout_file.save('stdout.txt', ContentFile('\n'.join(lines))) lines = ["Standard error for submission #{0} by {1}.".format(submission.submission_number, username), ""] submission.stderr_file.save('stderr.txt', ContentFile('\n'.join(lines))) # Update workflow state state['score'] = job_id submission.execution_key = json.dumps(state) submission.save() # Submit the request to the computation service body = json.dumps({"id" : job_id, "task_type": "run", "task_args": { "bundle_id" : submission.runfile.name, "container_name" : settings.BUNDLE_AZURE_CONTAINER, "reply_to" : settings.SBS_RESPONSE_QUEUE}}) getQueue(settings.SBS_COMPUTE_QUEUE).send_message(body) if has_generated_predictions == False: _set_submission_status(submission.id, CompetitionSubmissionStatus.SUBMITTED)
def predict(submission, job_id): """ Dispatches the prediction taks for the given submission to an appropriate compute worker. submission: The CompetitionSubmission object. job_id: The job ID used to track the progress of the evaluation. """ # Generate metadata-only bundle describing the computation lines = [] program_value = submission.file.name if len(program_value) > 0: lines.append("program: %s" % program_value) else: raise ValueError("Program is missing.") input_value = submission.phase.input_data.name if len(input_value) > 0: lines.append("input: %s" % input_value) lines.append("stdout: %s" % submission_stdout_filename(submission)) lines.append("stderr: %s" % submission_stderr_filename(submission)) submission.prediction_runfile.save('run.txt', ContentFile('\n'.join(lines))) # Create stdout.txt & stderr.txt username = submission.participant.user.username lines = [ "Standard output for submission #{0} by {1}.".format( submission.submission_number, username), "" ] submission.stdout_file.save('stdout.txt', ContentFile('\n'.join(lines))) lines = [ "Standard error for submission #{0} by {1}.".format( submission.submission_number, username), "" ] submission.stderr_file.save('stderr.txt', ContentFile('\n'.join(lines))) submission.save('stderr.txt', ContentFile('\n'.join(lines))) # Store workflow state submission.execution_key = json.dumps({'predict': job_id}) submission.save() # Submit the request to the computation service body = json.dumps({ "id": job_id, "task_type": "run", "task_args": { "bundle_id": submission.prediction_runfile.name, "container_name": settings.BUNDLE_AZURE_CONTAINER, "reply_to": settings.SBS_RESPONSE_QUEUE, "execution_time_limit": submission.phase.execution_time_limit } }) getQueue(settings.SBS_COMPUTE_QUEUE).send_message(body) # Update the submission object _set_submission_status(submission.id, CompetitionSubmissionStatus.SUBMITTED)
def predict(submission, job_id): """ Dispatches the prediction taks for the given submission to an appropriate compute worker. submission: The CompetitionSubmission object. job_id: The job ID used to track the progress of the evaluation. """ # Generate metadata-only bundle describing the computation lines = [] program_value = submission.file.name if len(program_value) > 0: lines.append("program: %s" % program_value) else: raise ValueError("Program is missing.") input_value = submission.phase.input_data.name logger.info("Running prediction") if len(input_value) > 0: lines.append("input: %s" % input_value) lines.append("stdout: %s" % submission_stdout_filename(submission)) lines.append("stderr: %s" % submission_stderr_filename(submission)) submission.prediction_runfile.save('run.txt', ContentFile('\n'.join(lines))) # Create stdout.txt & stderr.txt username = submission.participant.user.username lines = ["Standard output for submission #{0} by {1}.".format(submission.submission_number, username), ""] submission.stdout_file.save('stdout.txt', ContentFile('\n'.join(lines))) submission.prediction_stdout_file.save('prediction_stdout_file.txt', ContentFile('\n'.join(lines))) lines = ["Standard error for submission #{0} by {1}.".format(submission.submission_number, username), ""] submission.stderr_file.save('stderr.txt', ContentFile('\n'.join(lines))) submission.prediction_stderr_file.save('prediction_stderr_file.txt', ContentFile('\n'.join(lines))) # Store workflow state submission.execution_key = json.dumps({'predict' : job_id}) submission.save() # Submit the request to the computation service body = json.dumps({ "id" : job_id, "task_type": "run", "task_args": { "bundle_id": submission.prediction_runfile.name, "container_name": settings.BUNDLE_AZURE_CONTAINER, "reply_to": settings.SBS_RESPONSE_QUEUE, "execution_time_limit": submission.phase.execution_time_limit, "predict": True, } }) getQueue(settings.SBS_COMPUTE_QUEUE).send_message(body) # Update the submission object _set_submission_status(submission.id, CompetitionSubmissionStatus.SUBMITTED)
def score(submission, job_id): """ Dispatches the scoring task for the given submission to an appropriate compute worker. submission: The CompetitionSubmission object. job_id: The job ID used to track the progress of the evaluation. """ # Loads the computation state. state = {} if len(submission.execution_key) > 0: state = json.loads(submission.execution_key) has_generated_predictions = 'predict' in state #generate metadata-only bundle describing the history of submissions and phases last_submissions = CompetitionSubmission.objects.filter( participant=submission.participant, status__codename=CompetitionSubmissionStatus.FINISHED ).order_by('-submitted_at') lines = [] lines.append("description: history of all previous successful runs output files") if last_submissions: for past_submission in last_submissions: if past_submission.pk != submission.pk: #pad folder numbers for sorting os side, 001, 002, 003,... 010, etc... past_submission_phasenumber = '%03d' % past_submission.phase.phasenumber past_submission_number = '%03d' % past_submission.submission_number lines.append('%s/%s/output/: %s' % ( past_submission_phasenumber, past_submission_number, submission_private_output_filename(past_submission), ) ) else: pass submission.history_file.save('history.txt', ContentFile('\n'.join(lines))) score_csv = submission.phase.competition.get_results_csv(submission.phase.pk) submission.scores_file.save('scores.txt', ContentFile(score_csv)) # Extra submission info coopetition_zip_buffer = StringIO.StringIO() coopetition_zip_file = zipfile.ZipFile(coopetition_zip_buffer, "w") for phase in submission.phase.competition.phases.all(): coopetition_field_names = ( "participant__user__username", "pk", "when_made_public", "when_unmade_public", "started_at", "completed_at", "download_count", "submission_number", ) annotated_submissions = phase.submissions.filter(status__codename=CompetitionSubmissionStatus.FINISHED).values( *coopetition_field_names ).annotate(like_count=Count("likes"), dislike_count=Count("dislikes")) # Add this after fetching annotated count from db coopetition_field_names += ("like_count", "dislike_count") coopetition_csv = StringIO.StringIO() writer = csv.DictWriter(coopetition_csv, coopetition_field_names) writer.writeheader() for row in annotated_submissions: writer.writerow(row) coopetition_zip_file.writestr('coopetition_phase_%s.txt' % phase.phasenumber, coopetition_csv.getvalue()) # Scores metadata for phase in submission.phase.competition.phases.all(): coopetition_zip_file.writestr( 'coopetition_scores_phase_%s.txt' % phase.phasenumber, phase.competition.get_results_csv(phase.pk, include_scores_not_on_leaderboard=True) ) # Download metadata coopetition_downloads_csv = StringIO.StringIO() writer = csv.writer(coopetition_downloads_csv) writer.writerow(( "submission_pk", "submission_owner", "downloaded_by", "time_of_download", )) for download in DownloadRecord.objects.filter(submission__phase__competition=submission.phase.competition): writer.writerow(( download.submission.pk, download.submission.participant.user.username, download.user.username, str(download.timestamp), )) coopetition_zip_file.writestr('coopetition_downloads.txt', coopetition_downloads_csv.getvalue()) coopetition_zip_file.close() submission.coopetition_file.save('coopetition.zip', ContentFile(coopetition_zip_buffer.getvalue())) # Generate metadata-only bundle describing the inputs. Reference data is an optional # dataset provided by the competition organizer. Results are provided by the participant # either indirectly (has_generated_predictions is True i.e. participant provides a program # which is run to generate results) ordirectly (participant uploads results directly). lines = [] ref_value = submission.phase.reference_data.name if len(ref_value) > 0: lines.append("ref: %s" % ref_value) res_value = submission.prediction_output_file.name if has_generated_predictions else submission.file.name if len(res_value) > 0: lines.append("res: %s" % res_value) else: raise ValueError("Results are missing.") lines.append("history: %s" % submission_history_file_name(submission)) lines.append("scores: %s" % submission_scores_file_name(submission)) lines.append("coopetition: %s" % submission_coopetition_file_name(submission)) lines.append("submitted-by: %s" % submission.participant.user.username) lines.append("submitted-at: %s" % submission.submitted_at.replace(microsecond=0).isoformat()) lines.append("competition-submission: %s" % submission.submission_number) lines.append("competition-phase: %s" % submission.phase.phasenumber) is_automatic_submission = False if submission.phase.auto_migration: # If this phase has auto_migration and this submission is the first in the phase, it is an automatic submission! submissions_this_phase = CompetitionSubmission.objects.filter( phase=submission.phase, participant=submission.participant ).count() is_automatic_submission = submissions_this_phase == 1 lines.append("automatic-submission: %s" % is_automatic_submission) submission.inputfile.save('input.txt', ContentFile('\n'.join(lines))) # Generate metadata-only bundle describing the computation. lines = [] program_value = submission.phase.scoring_program.name if len(program_value) > 0: lines.append("program: %s" % program_value) else: raise ValueError("Program is missing.") lines.append("input: %s" % submission.inputfile.name) lines.append("stdout: %s" % submission_stdout_filename(submission)) lines.append("stderr: %s" % submission_stderr_filename(submission)) submission.runfile.save('run.txt', ContentFile('\n'.join(lines))) # Create stdout.txt & stderr.txt if has_generated_predictions == False: username = submission.participant.user.username lines = ["Standard output for submission #{0} by {1}.".format(submission.submission_number, username), ""] submission.stdout_file.save('stdout.txt', ContentFile('\n'.join(lines))) lines = ["Standard error for submission #{0} by {1}.".format(submission.submission_number, username), ""] submission.stderr_file.save('stderr.txt', ContentFile('\n'.join(lines))) # Update workflow state state['score'] = job_id submission.execution_key = json.dumps(state) submission.save() # Submit the request to the computation service body = json.dumps({ "id" : job_id, "task_type": "run", "task_args": { "bundle_id" : submission.runfile.name, "container_name" : settings.BUNDLE_AZURE_CONTAINER, "reply_to" : settings.SBS_RESPONSE_QUEUE, "execution_time_limit": submission.phase.execution_time_limit, "predict": False, } }) getQueue(settings.SBS_COMPUTE_QUEUE).send_message(body) if has_generated_predictions == False: _set_submission_status(submission.id, CompetitionSubmissionStatus.SUBMITTED)
def score(submission, job_id): """ Dispatches the scoring task for the given submission to an appropriate compute worker. submission: The CompetitionSubmission object. job_id: The job ID used to track the progress of the evaluation. """ # Loads the computation state. state = {} if len(submission.execution_key) > 0: state = json.loads(submission.execution_key) has_generated_predictions = 'predict' in state #generate metadata-only bundle describing the history of submissions and phases last_submissions = CompetitionSubmission.objects.filter( participant=submission.participant, status__codename=CompetitionSubmissionStatus.FINISHED ).order_by('-submitted_at') lines = [] lines.append("description: history of all previous successful runs output files") if last_submissions: for past_submission in last_submissions: if past_submission.pk != submission.pk: #pad folder numbers for sorting os side, 001, 002, 003,... 010, etc... past_submission_phasenumber = '%03d' % past_submission.phase.phasenumber past_submission_number = '%03d' % past_submission.submission_number lines.append('%s/%s/output/: %s' % ( past_submission_phasenumber, past_submission_number, submission_private_output_filename(past_submission), ) ) else: pass submission.history_file.save('history.txt', ContentFile('\n'.join(lines))) submission.scores_file.save('scores.txt', ContentFile(submission.phase.competition.get_results_csv(submission.phase.pk))) # Generate metadata-only bundle describing the inputs. Reference data is an optional # dataset provided by the competition organizer. Results are provided by the participant # either indirectly (has_generated_predictions is True i.e. participant provides a program # which is run to generate results) ordirectly (participant uploads results directly). lines = [] ref_value = submission.phase.reference_data.name if len(ref_value) > 0: lines.append("ref: %s" % ref_value) res_value = submission.prediction_output_file.name if has_generated_predictions else submission.file.name if len(res_value) > 0: lines.append("res: %s" % res_value) else: raise ValueError("Results are missing.") lines.append("history: %s" % submission_history_file_name(submission)) lines.append("scores: %s" % submission_scores_file_name(submission)) lines.append("submitted-by: %s" % submission.participant.user.username) lines.append("submitted-at: %s" % submission.submitted_at.replace(microsecond=0).isoformat()) lines.append("competition-submission: %s" % submission.submission_number) lines.append("competition-phase: %s" % submission.phase.phasenumber) is_automatic_submission = False if submission.phase.auto_migration: # If this phase has auto_migration and this submission is the first in the phase, it is an automatic submission! submissions_this_phase = CompetitionSubmission.objects.filter( phase=submission.phase, participant=submission.participant ).count() is_automatic_submission = submissions_this_phase == 1 lines.append("automatic-submission: %s" % is_automatic_submission) submission.inputfile.save('input.txt', ContentFile('\n'.join(lines))) # Generate metadata-only bundle describing the computation. lines = [] program_value = submission.phase.scoring_program.name if len(program_value) > 0: lines.append("program: %s" % program_value) else: raise ValueError("Program is missing.") lines.append("input: %s" % submission.inputfile.name) lines.append("stdout: %s" % submission_stdout_filename(submission)) lines.append("stderr: %s" % submission_stderr_filename(submission)) submission.runfile.save('run.txt', ContentFile('\n'.join(lines))) # Create stdout.txt & stderr.txt if has_generated_predictions == False: username = submission.participant.user.username lines = ["Standard output for submission #{0} by {1}.".format(submission.submission_number, username), ""] submission.stdout_file.save('stdout.txt', ContentFile('\n'.join(lines))) lines = ["Standard error for submission #{0} by {1}.".format(submission.submission_number, username), ""] submission.stderr_file.save('stderr.txt', ContentFile('\n'.join(lines))) # Update workflow state state['score'] = job_id submission.execution_key = json.dumps(state) submission.save() # Submit the request to the computation service body = json.dumps({ "id" : job_id, "task_type": "run", "task_args": { "bundle_id" : submission.runfile.name, "container_name" : settings.BUNDLE_AZURE_CONTAINER, "reply_to" : settings.SBS_RESPONSE_QUEUE, "execution_time_limit": submission.phase.execution_time_limit, "predict": False, } }) getQueue(settings.SBS_COMPUTE_QUEUE).send_message(body) if has_generated_predictions == False: _set_submission_status(submission.id, CompetitionSubmissionStatus.SUBMITTED)
def score(submission, job_id): """ Dispatches the scoring task for the given submission to an appropriate compute worker. submission: The CompetitionSubmission object. job_id: The job ID used to track the progress of the evaluation. """ # Loads the computation state. state = {} if len(submission.execution_key) > 0: state = json.loads(submission.execution_key) has_generated_predictions = 'predict' in state #generate metadata-only bundle describing the history of submissions and phases last_submissions = CompetitionSubmission.objects.filter( participant=submission.participant, status__codename=CompetitionSubmissionStatus.FINISHED).order_by( '-submitted_at') lines = [] lines.append( "description: history of all previous successful runs output files") if last_submissions: for past_submission in last_submissions: if past_submission.pk != submission.pk: #pad folder numbers for sorting os side, 001, 002, 003,... 010, etc... past_submission_phasenumber = '%03d' % past_submission.phase.phasenumber past_submission_number = '%03d' % past_submission.submission_number lines.append('%s/%s/output/: %s' % ( past_submission_phasenumber, past_submission_number, submission_private_output_filename(past_submission), )) else: pass submission.history_file.save('history.txt', ContentFile('\n'.join(lines))) score_csv = submission.phase.competition.get_results_csv( submission.phase.pk) submission.scores_file.save('scores.txt', ContentFile(score_csv)) # Extra submission info coopetition_zip_buffer = StringIO.StringIO() coopetition_zip_file = zipfile.ZipFile(coopetition_zip_buffer, "w") for phase in submission.phase.competition.phases.all(): coopetition_field_names = ( "participant__user__username", "pk", "when_made_public", "when_unmade_public", "started_at", "completed_at", "download_count", "submission_number", ) annotated_submissions = phase.submissions.filter( status__codename=CompetitionSubmissionStatus.FINISHED).values( *coopetition_field_names).annotate( like_count=Count("likes"), dislike_count=Count("dislikes")) # Add this after fetching annotated count from db coopetition_field_names += ("like_count", "dislike_count") coopetition_csv = StringIO.StringIO() writer = csv.DictWriter(coopetition_csv, coopetition_field_names) writer.writeheader() for row in annotated_submissions: writer.writerow(row) coopetition_zip_file.writestr( 'coopetition_phase_%s.txt' % phase.phasenumber, coopetition_csv.getvalue().encode('utf-8')) # Scores metadata for phase in submission.phase.competition.phases.all(): coopetition_zip_file.writestr( 'coopetition_scores_phase_%s.txt' % phase.phasenumber, phase.competition.get_results_csv( phase.pk, include_scores_not_on_leaderboard=True).encode('utf-8')) # Download metadata coopetition_downloads_csv = StringIO.StringIO() writer = csv.writer(coopetition_downloads_csv) writer.writerow(( "submission_pk", "submission_owner", "downloaded_by", "time_of_download", )) for download in DownloadRecord.objects.filter( submission__phase__competition=submission.phase.competition): writer.writerow(( download.submission.pk, download.submission.participant.user.username, download.user.username, str(download.timestamp), )) coopetition_zip_file.writestr( 'coopetition_downloads.txt', coopetition_downloads_csv.getvalue().encode('utf-8')) # Current user coopetition_zip_file.writestr( 'current_user.txt', submission.participant.user.username.encode('utf-8')) coopetition_zip_file.close() # Save them all submission.coopetition_file.save( 'coopetition.zip', ContentFile(coopetition_zip_buffer.getvalue())) # Generate metadata-only bundle describing the inputs. Reference data is an optional # dataset provided by the competition organizer. Results are provided by the participant # either indirectly (has_generated_predictions is True i.e. participant provides a program # which is run to generate results) ordirectly (participant uploads results directly). lines = [] ref_value = submission.phase.reference_data.name if len(ref_value) > 0: lines.append("ref: %s" % ref_value) res_value = submission.prediction_output_file.name if has_generated_predictions else submission.file.name if len(res_value) > 0: lines.append("res: %s" % res_value) else: raise ValueError("Results are missing.") lines.append("history: %s" % submission_history_file_name(submission)) lines.append("scores: %s" % submission_scores_file_name(submission)) lines.append("coopetition: %s" % submission_coopetition_file_name(submission)) lines.append("submitted-by: %s" % submission.participant.user.username) lines.append("submitted-at: %s" % submission.submitted_at.replace(microsecond=0).isoformat()) lines.append("competition-submission: %s" % submission.submission_number) lines.append("competition-phase: %s" % submission.phase.phasenumber) is_automatic_submission = False if submission.phase.auto_migration: # If this phase has auto_migration and this submission is the first in the phase, it is an automatic submission! submissions_this_phase = CompetitionSubmission.objects.filter( phase=submission.phase, participant=submission.participant).count() is_automatic_submission = submissions_this_phase == 1 lines.append("automatic-submission: %s" % is_automatic_submission) submission.inputfile.save('input.txt', ContentFile('\n'.join(lines))) # Generate metadata-only bundle describing the computation. lines = [] program_value = submission.phase.scoring_program.name if len(program_value) > 0: lines.append("program: %s" % program_value) else: raise ValueError("Program is missing.") lines.append("input: %s" % submission.inputfile.name) lines.append("stdout: %s" % submission_stdout_filename(submission)) lines.append("stderr: %s" % submission_stderr_filename(submission)) submission.runfile.save('run.txt', ContentFile('\n'.join(lines))) # Create stdout.txt & stderr.txt if has_generated_predictions == False: username = submission.participant.user.username lines = [ "Standard output for submission #{0} by {1}.".format( submission.submission_number, username), "" ] submission.stdout_file.save('stdout.txt', ContentFile('\n'.join(lines))) lines = [ "Standard error for submission #{0} by {1}.".format( submission.submission_number, username), "" ] submission.stderr_file.save('stderr.txt', ContentFile('\n'.join(lines))) # Update workflow state state['score'] = job_id submission.execution_key = json.dumps(state) submission.save() # Submit the request to the computation service body = json.dumps({ "id": job_id, "task_type": "run", "task_args": { "bundle_id": submission.runfile.name, "container_name": settings.BUNDLE_AZURE_CONTAINER, "reply_to": settings.SBS_RESPONSE_QUEUE, "execution_time_limit": submission.phase.execution_time_limit, "predict": False, } }) getQueue(settings.SBS_COMPUTE_QUEUE).send_message(body) if has_generated_predictions == False: _set_submission_status(submission.id, CompetitionSubmissionStatus.SUBMITTED)
def score(submission, job_id): """ Dispatches the scoring task for the given submission to an appropriate compute worker. submission: The CompetitionSubmission object. job_id: The job ID used to track the progress of the evaluation. """ # Loads the computation state. state = {} if len(submission.execution_key) > 0: state = json.loads(submission.execution_key) has_generated_predictions = 'predict' in state #generate metadata-only bundle describing the history of submissions and phases last_submissions = CompetitionSubmission.objects.filter( participant=submission.participant, status__codename=CompetitionSubmissionStatus.FINISHED).order_by( '-submitted_at') lines = [] lines.append( "description: history of all previous successful runs output files") if last_submissions: for past_submission in last_submissions: if past_submission.pk != submission.pk: #pad folder numbers for sorting os side, 001, 002, 003,... 010, etc... past_submission_phasenumber = '%03d' % past_submission.phase.phasenumber past_submission_number = '%03d' % past_submission.submission_number lines.append('%s/%s/output/: %s' % ( past_submission_phasenumber, past_submission_number, submission_private_output_filename(past_submission), )) else: pass submission.history_file.save('history.txt', ContentFile('\n'.join(lines))) # Generate metadata-only bundle describing the inputs. Reference data is an optional # dataset provided by the competition organizer. Results are provided by the participant # either indirectly (has_generated_predictions is True i.e. participant provides a program # which is run to generate results) ordirectly (participant uploads results directly). lines = [] ref_value = submission.phase.reference_data.name if len(ref_value) > 0: lines.append("ref: %s" % ref_value) res_value = submission.prediction_output_file.name if has_generated_predictions else submission.file.name if len(res_value) > 0: lines.append("res: %s" % res_value) else: raise ValueError("Results are missing.") lines.append("history: %s" % submission_history_file_name(submission)) lines.append("submitted-by: %s" % submission.participant.user.username) lines.append("submitted-at: %s" % submission.submitted_at.replace(microsecond=0).isoformat()) lines.append("competition-submission: %s" % submission.submission_number) lines.append("competition-phase: %s" % submission.phase.phasenumber) is_automatic_submission = False if submission.phase.auto_migration: # If this phase has auto_migration and this submission is the first in the phase, it is an automatic submission! submissions_this_phase = CompetitionSubmission.objects.filter( phase=submission.phase, participant=submission.participant).count() is_automatic_submission = submissions_this_phase == 1 lines.append("automatic-submission: %s" % is_automatic_submission) submission.inputfile.save('input.txt', ContentFile('\n'.join(lines))) # Generate metadata-only bundle describing the computation. lines = [] program_value = submission.phase.scoring_program.name if len(program_value) > 0: lines.append("program: %s" % program_value) else: raise ValueError("Program is missing.") lines.append("input: %s" % submission.inputfile.name) lines.append("stdout: %s" % submission_stdout_filename(submission)) lines.append("stderr: %s" % submission_stderr_filename(submission)) submission.runfile.save('run.txt', ContentFile('\n'.join(lines))) # Create stdout.txt & stderr.txt if has_generated_predictions == False: username = submission.participant.user.username lines = [ "Standard output for submission #{0} by {1}.".format( submission.submission_number, username), "" ] submission.stdout_file.save('stdout.txt', ContentFile('\n'.join(lines))) lines = [ "Standard error for submission #{0} by {1}.".format( submission.submission_number, username), "" ] submission.stderr_file.save('stderr.txt', ContentFile('\n'.join(lines))) # Update workflow state state['score'] = job_id submission.execution_key = json.dumps(state) submission.save() # Submit the request to the computation service body = json.dumps({ "id": job_id, "task_type": "run", "task_args": { "bundle_id": submission.runfile.name, "container_name": settings.BUNDLE_AZURE_CONTAINER, "reply_to": settings.SBS_RESPONSE_QUEUE, "execution_time_limit": submission.phase.execution_time_limit } }) getQueue(settings.SBS_COMPUTE_QUEUE).send_message(body) if has_generated_predictions == False: _set_submission_status(submission.id, CompetitionSubmissionStatus.SUBMITTED)