def write_out_plots_current_step(self, same_steps_only=True): """ This method will write out all plots available to the path configured in self.lab_run_directory. Parameters --------- same_steps_only : boolean, optional Write only if all experiment assistants in this lab assistant are currently in the same step. """ step_string, same_step = self._compute_current_step_overall() if same_steps_only and not same_step: return plot_base = os.path.join(self.lab_run_directory, "plots") plot_step_base = os.path.join(plot_base, step_string) ensure_directory_exists(plot_step_base) plots_to_write = self.generate_all_plots() #finally write out all plots created above to their files for plot_name in plots_to_write.keys(): plot_fig = plots_to_write[plot_name] write_plot_to_file(plot_fig, plot_name + "_" + step_string, plot_step_base)
def _create_experiment_directory(self): global_start_date = time.time() date_name = datetime.datetime.utcfromtimestamp(global_start_date).strftime("%Y-%m-%d_%H:%M:%S") self.experiment_directory_base = os.path.join(self.write_directory_base, self.experiment.name + "_" + date_name) ensure_directory_exists(self.experiment_directory_base)
def get_logger(module, specific_log_name=None): """ Abstraction from logging.getLogging, which also adds initialization. Logging is configured directly at root level (in the standard usecase, at least). You also have the opportunity to specify a certain directory to which details of only this logger (and all subloggers) are written. Currently, nothing is configurable from the outside. This is planned to be changed. Parameters ---------- module : object or string The object for which we'd like to get the logger. The name of the logger is then, analogous to logging, set to module.__module__ + "." + module.__class__.__name__ If the object is a string it will be taken as name directly. specific_log_name : string, optional If you want logging for this logger (and all sublogger) to a specific file, this allows you to set the corresponding filename. Returns ------- logger: logging.logger A logging for module. """ #if logger is already given as a string take directly. otherwise compute. if isinstance(module, basestring): new_logger_name = module else: new_logger_name = module.__module__ + "." + module.__class__.__name__ formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') LOG_ROOT = os.environ.get('APSIS_LOG_ROOT', '/tmp/APSIS_WRITING/logs') ensure_directory_exists(LOG_ROOT) global logging_intitialized if not logging_intitialized: logging_intitialized = True #initialize the root logger. project_dirname = os.path.dirname(apsis.__file__) log_config_file = os.path.join(project_dirname, 'config/logging.conf') logging.config.fileConfig( log_config_file, defaults={'logfilename': os.path.join(LOG_ROOT, "log")}) logger_existed = False if new_logger_name in logging.Logger.manager.loggerDict: logger_existed = True logger = logging.getLogger(new_logger_name) if specific_log_name is not None and not logger_existed: fh = logging.FileHandler(os.path.join(LOG_ROOT, specific_log_name)) fh.setFormatter(formatter) logger.addHandler(fh) return logger
def __init__(self, name, optimizer, param_defs, experiment=None, optimizer_arguments=None, minimization=True, write_directory_base="/tmp/APSIS_WRITING", experiment_directory_base=None, csv_write_frequency=1): """ Initializes the BasicExperimentAssistant. Parameters ---------- name : string The name of the experiment. This does not have to be unique, but is for human orientation. optimizer : Optimizer instance or string This is an optimizer implementing the corresponding functions: It gets an experiment instance, and returns one or multiple candidates which should be evaluated next. Alternatively, it can be a string corresponding to the optimizer, as defined by apsis.utilities.optimizer_utils. param_defs : dict of ParamDef. This is the parameter space defining the experiment. experiment : Experiment Preinitialize this assistant with an existing experiment. optimizer_arguments=None : dict These are arguments for the optimizer. Refer to their documentation as to which are available. minimization=True : bool Whether the problem is one of minimization or maximization. write_directory_base : string, optional The global base directory for all writing. Will only be used for creation of experiment_directory_base if this is not given. experiment_directory_base : string or None, optional The directory to write all the results to. If not given a directory with timestamp will automatically be created in write_directory_base csv_write_frequency : int, optional States how often the csv file should be written to. If set to 0 no results will be written. """ self.logger = get_logger(self) self.logger.info("Initializing experiment assistant.") self.optimizer = optimizer self.optimizer_arguments = optimizer_arguments if experiment is None: self.experiment = Experiment(name, param_defs, minimization) else: self.experiment = experiment self.csv_write_frequency = csv_write_frequency if self.csv_write_frequency != 0: self.write_directory_base = write_directory_base if experiment_directory_base is not None: self.experiment_directory_base = experiment_directory_base ensure_directory_exists(self.experiment_directory_base) else: self._create_experiment_directory() self.logger.info("Experiment assistant successfully initialized.")
def _create_experiment_directory(self): global_start_date = time.time() date_name = datetime.datetime.utcfromtimestamp( global_start_date).strftime("%Y-%m-%d_%H:%M:%S") self.experiment_directory_base = os.path.join(self.write_directory_base, self.experiment.name + "_" + date_name) ensure_directory_exists(self.experiment_directory_base)
def get_logger(module, specific_log_name=None): """ Abstraction from logging.getLogging, which also adds initialization. Logging is configured directly at root level (in the standard usecase, at least). You also have the opportunity to specify a certain directory to which details of only this logger (and all subloggers) are written. Currently, nothing is configurable from the outside. This is planned to be changed. Parameters ---------- module : object or string The object for which we'd like to get the logger. The name of the logger is then, analogous to logging, set to module.__module__ + "." + module.__class__.__name__ If the object is a string it will be taken as name directly. specific_log_name : string, optional If you want logging for this logger (and all sublogger) to a specific file, this allows you to set the corresponding filename. Returns ------- logger: logging.logger A logging for module. """ #if logger is already given as a string take directly. otherwise compute. if isinstance(module, basestring): new_logger_name = module else: new_logger_name = module.__module__ + "." + module.__class__.__name__ formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') LOG_ROOT = os.environ.get('APSIS_LOG_ROOT', '/tmp/APSIS_WRITING/logs') ensure_directory_exists(LOG_ROOT) global logging_intitialized if not logging_intitialized: logging_intitialized = True #initialize the root logger. project_dirname = os.path.dirname(apsis.__file__) log_config_file = os.path.join(project_dirname, 'config/logging.conf') logging.config.fileConfig(log_config_file, defaults={'logfilename': os.path.join(LOG_ROOT, "log")}) logger_existed = False if new_logger_name in logging.Logger.manager.loggerDict: logger_existed = True logger = logging.getLogger(new_logger_name) if specific_log_name is not None and not logger_existed: fh = logging.FileHandler(os.path.join(LOG_ROOT, specific_log_name)) fh.setFormatter(formatter) logger.addHandler(fh) return logger
def _create_experiment_directory(self): """ Generates an experiment directory from the base write directory. """ global_start_date = time.time() date_name = datetime.datetime.utcfromtimestamp( global_start_date).strftime("%Y-%m-%d_%H:%M:%S") self._experiment_directory_base = os.path.join( self._write_directory_base, self._experiment.exp_id) ensure_directory_exists(self._experiment_directory_base)
def _init_directory_structure(self): """ Method to create the directory structure if not exists for results and plots writing """ if self.lab_run_directory is None: date_name = datetime.datetime.utcfromtimestamp( self.global_start_date).strftime("%Y-%m-%d_%H:%M:%S") self.lab_run_directory = os.path.join(self.write_directory_base, date_name) ensure_directory_exists(self.lab_run_directory)
def write_plots(self): """ Writes out the plots of this assistant. """ fig = self.plot_result_per_step() filename = "result_per_step_%i" \ % len(self._experiment.candidates_finished) path = self._experiment_directory_base + "/plots" ensure_directory_exists(path) write_plot_to_file(fig, filename, path) write_plot_to_file(fig, "cur_state", self._experiment_directory_base) plt.close(fig)
def __init__(self, optimizer_class, optimizer_arguments=None, write_directory_base=None, experiment_directory=None, csv_write_frequency=1): """ Initializes this experiment assistant. Note that calling this function does not yet create an experiment, for that, use init_experiment. If there is an already existing experiment, you can just set self._experiment. Parameters ---------- optimizer_class : subclass of Optimizer The class of the optimizer, used to initialize it. optimizer_arguments : dict, optional The dictionary of optimizer arguments. If None, default values will be used. experiment_directory_base : string, optional The folder to which the csv intermediary results and the plots will be written. Default is <write_directory_base>/exp_id. write_directory_base : string, optional The base directory. In the default case, this is dependant on the OS. On windows, it is set to ./APSIS_WRITING/. On Linux, it is set to /tmp/APSIS_WRITING/. If an experiment_directory has been given, this will be ignored. csv_write_frequency : int, optional This sets the frequency with which the csv file is written. If set to 1 (the default), it writes every step. If set to 2, every second and so on. Note that it still writes out every step eventually. """ self._logger = get_logger(self) self._logger.info("Initializing experiment assistant.") self._csv_write_frequency = csv_write_frequency self._optimizer = optimizer_class self._optimizer_arguments = optimizer_arguments if self._csv_write_frequency != 0: if experiment_directory is not None: self._experiment_directory_base = experiment_directory ensure_directory_exists(self._experiment_directory_base) else: if write_directory_base is None: if os.name == "nt": self._write_directory_base = \ os.path.relpath("APSIS_WRITING") else: self._write_directory_base = "/tmp/APSIS_WRITING" else: self._write_directory_base = write_directory_base self._logger.info("Experiment assistant for successfully " "initialized.")
def _load_exp_assistant_from_path(self, path): """ This loads a complete exp_assistant from path. Specifically, it looks for exp_assistant.json in the path and restores optimizer_class, optimizer_arguments and write_dir from this. It then loads the experiment from the write_dir/experiment.json, then initializes both. Parameters ---------- path : string The path from which to initialize. This must contain an exp_assistant.json as specified. """ self._logger.debug("Loading Exp_assistant from path %s" % path) with open(path + "/exp_assistant.json", 'r') as infile: exp_assistant_json = json.load(infile) optimizer_class = exp_assistant_json["optimizer_class"] optimizer_arguments = exp_assistant_json["optimizer_arguments"] exp_ass_write_dir = exp_assistant_json["write_dir"] ensure_directory_exists(exp_ass_write_dir) self._logger.debug( "\tLoaded exp_parameters: " "optimizer_class: %s, optimizer_arguments: %s," "write_dir: %s" % (optimizer_class, optimizer_arguments, exp_ass_write_dir)) exp = self._load_experiment(path) self._logger.debug("\tLoaded Experiment. %s" % exp.to_dict()) exp_ass = ExperimentAssistant(optimizer_class=optimizer_class, experiment=exp, optimizer_arguments=optimizer_arguments, write_dir=exp_ass_write_dir) if exp_ass.exp_id in self._exp_assistants: raise ValueError("Loaded exp_id is duplicated in experiment! id " "is %s" % exp_ass.exp_id) self._exp_assistants[exp_ass.exp_id] = exp_ass self._logger.info("Successfully loaded experiment from %s." % path)
def write_out_plots_current_step(self, exp_ass=None, same_steps_only=True): """ This method will write out all plots available to the path configured in self.lab_run_directory. Parameters --------- exp_ass : list, optional List of experiment assistant names to include in the plots. Defaults to None, which is equivalent to all. same_steps_only : boolean, optional Write only if all experiment assistants in this lab assistant are currently in the same step. """ min_step = self._get_min_step() if same_steps_only: plot_up_to = min_step else: plot_up_to = None plot_base = os.path.join(self._lab_run_directory, "plots") plot_step_base = os.path.join(plot_base, "step_" + str(min_step)) ensure_directory_exists(plot_step_base) if exp_ass is None: exp_ass = self._exp_assistants.keys() plots_to_write = self.generate_all_plots(exp_ass, plot_up_to) #finally write out all plots created above to their files for plot_name in plots_to_write.keys(): plot_fig = plots_to_write[plot_name] write_plot_to_file(plot_fig, plot_name + "_step" + str(min_step), plot_step_base) plt.close(plot_fig)
def init_experiment(self, name, optimizer, param_defs, exp_id=None, notes=None, optimizer_arguments=None, minimization=True): """ Initializes an experiment. Parameters ---------- name : string name of the experiment. optimizer : string String representation of the optimizer. param_defs : dict of parameter definitions Dictionary of parameter definition classes. optimizer_arguments : dict, optional A dictionary defining the operation of the optimizer. See the respective documentation of the optimizers. Default is None, which are default values. exp_id : string or None, optional The id of the experiment, which will be used to reference it. Should be a proper uuid, and especially has to be unique. If it is not, an error may be returned. notes : jsonable object or None, optional Any note that you'd like to put in the experiment. Could be used to provide some details on the experiment, on the start time or the user starting it. minimization : bool, optional Whether the problem is one of minimization. Defaults to True. Returns ------- exp_id : string String representing the id of the experiment or "failed" if failed. Raises ------ ValueError : Iff there already is an experiment with the exp_id for this lab assistant. Does not occur if no exp_id is given. """ self._logger.debug("Initializing new experiment. Parameters: " "name: %s, optimizer: %s, param_defs: %s, " "exp_id: %s, notes: %s, optimizer_arguments: %s, " "minimization: %s" % (name, optimizer, param_defs, exp_id, notes, optimizer_arguments, minimization)) if exp_id in self._exp_assistants.keys(): raise ValueError("Already an experiment with id %s registered." % exp_id) if exp_id is None: while True: exp_id = uuid.uuid4().hex if exp_id not in self._exp_assistants.keys(): break self._logger.debug("\tGenerated new exp_id: %s" % exp_id) if not self._write_dir: exp_assistant_write_directory = None else: exp_assistant_write_directory = os.path.join(self._write_dir + "/" + exp_id) ensure_directory_exists(exp_assistant_write_directory) self._logger.debug("\tExp_ass directory: %s" % exp_assistant_write_directory) exp = experiment.Experiment(name, param_defs, exp_id, notes, minimization) exp_ass = ExperimentAssistant(optimizer, experiment=exp, optimizer_arguments=optimizer_arguments, write_dir=exp_assistant_write_directory) self._exp_assistants[exp_id] = exp_ass self._logger.info("Experiment initialized successfully with id %s." % exp_id) self._write_state_to_file() return exp_id
def get_logger(module, extra_info=None, save_path=None): """ Abstraction from logging.getLogging, which also adds initialization. This loads the logging config from config/logging.conf. Parameters ---------- module : object or string The object for which we'd like to get the logger. The name of the logger is then, analogous to logging, set to module.__module__ + "." + module.__class__.__name__ If the object is a string it will be taken as name directly. extra_info : string, optional If None (the default), a usual logger is returned. If not, a logger_adapter is returned, which always prepends the corresponding string. save_path : string, optional The path on which to store the logging. If logging has been initialized previously, this is ignored (and a warning is logged). If a path has been specified in the config file, this is also ignored (and a warning is issued). Otherwise, this path replaces all instances of the token <SAVE_PATH> in the file_name of all handlers. If it does not end with "/" we'll automatically add it. That means both "/tmp/APSIS_WRITING" and "/tmp/APSIS_WRITING/" is treated identically, and logging is added in "/tmp/APSIS_WRITING/logs". Returns ------- logger: logging.logger A logging for module. """ #if logger is already given as a string take directly. otherwise compute. if isinstance(module, basestring): new_logger_name = module else: new_logger_name = module.__module__ + "." + module.__class__.__name__ global testing global logging_intitialized if not logging_intitialized and not testing: logging_intitialized = True # Look for the logging config file. project_dirname = os.path.dirname(apsis.__file__) log_config_file = os.path.join(project_dirname, 'config/logging.conf') with open(log_config_file, "r") as conf_file: conf_dict = yaml.load(conf_file) handlers = conf_dict["handlers"] handler_keys = handlers.keys() for h in handler_keys: if "filename" in handlers[h]: if "<SAVE_PATH>" in handlers[h]["filename"]: if not save_path.endswith("/"): save_path += "/" handlers[h]["filename"] = handlers[h]["filename"].replace( "<SAVE_PATH>/", save_path).replace("<SAVE_PATH>", save_path) ensure_directory_exists(os.path.dirname(handlers[h]["filename"])) logging.config.dictConfig(conf_dict) logger = logging.getLogger(new_logger_name) if extra_info: logger = AddInfoClass(logger, {"extra_info": extra_info}) return logger
def __init__( self, name, optimizer, param_defs, experiment=None, optimizer_arguments=None, minimization=True, write_directory_base="/tmp/APSIS_WRITING", experiment_directory_base=None, csv_write_frequency=1, ): """ Initializes the BasicExperimentAssistant. Parameters ---------- name : string The name of the experiment. This does not have to be unique, but is for human orientation. optimizer : Optimizer instance or string This is an optimizer implementing the corresponding functions: It gets an experiment instance, and returns one or multiple candidates which should be evaluated next. Alternatively, it can be a string corresponding to the optimizer, as defined by apsis.utilities.optimizer_utils. param_defs : dict of ParamDef. This is the parameter space defining the experiment. experiment : Experiment Preinitialize this assistant with an existing experiment. optimizer_arguments=None : dict These are arguments for the optimizer. Refer to their documentation as to which are available. minimization=True : bool Whether the problem is one of minimization or maximization. write_directory_base : string, optional The global base directory for all writing. Will only be used for creation of experiment_directory_base if this is not given. experiment_directory_base : string or None, optional The directory to write all the results to. If not given a directory with timestamp will automatically be created in write_directory_base csv_write_frequency : int, optional States how often the csv file should be written to. If set to 0 no results will be written. """ self.logger = get_logger(self) self.logger.info("Initializing experiment assistant.") self.optimizer = optimizer self.optimizer_arguments = optimizer_arguments if experiment is None: self.experiment = Experiment(name, param_defs, minimization) else: self.experiment = experiment self.csv_write_frequency = csv_write_frequency if self.csv_write_frequency != 0: self.write_directory_base = write_directory_base if experiment_directory_base is not None: self.experiment_directory_base = experiment_directory_base ensure_directory_exists(self.experiment_directory_base) else: self._create_experiment_directory() self.logger.info("Experiment assistant successfully initialized.")