예제 #1
0
파일: LQPctrl.py 프로젝트: mickey79/LQPctrl
    def _update_Jc(self):
        """ Extract the Jacobian and dJacobian matrix of contact points.

        """
        self.Jc[:]  = 0.
        self.dJc[:] = 0.
        i = 0
        for c in self.constraints:
            if c.is_enabled() and c.is_active() and self.is_enabled[c]:
                frame0, frame1 = c._frames[0], c._frames[1]
                if isinstance(c, PointContact):
                    self.dJc[3*i:(3*(i+1)), :] = frame1.djacobian[3:6] - \
                                                 frame0.djacobian[3:6]
                    if frame1.body in self.bodies:
                        self.Jc [3*i:(3*(i+1)), :] += frame1.jacobian[3:6]
                    if frame0.body in self.bodies:
                        self.Jc [3*i:(3*(i+1)), :] -= frame0.jacobian[3:6]
                elif isinstance(c, BallAndSocketConstraint):
                    H1_0   = dot(inv(frame1.pose), frame0.pose)
                    Ad1_0  = adjoint(H1_0)
                    Ad0_1  = iadjoint(H1_0)
                    T0_g_0 = frame0.twist
                    T1_g_1 = frame1.twist
                    T1_g_0 = dot(Ad0_1, T1_g_1)
                    T0_1_0 = T0_g_0 - T1_g_0
                    J0 = dot(Ad1_0, frame0.jacobian)
                    J1 = frame1.jacobian
                    dJ0 = dot(Ad1_0, frame0.djacobian) + \
                          dot(dAdjoint(Ad1_0, T0_1_0), frame0.jacobian)
                    dJ1 = frame1.djacobian
                    self.Jc[3*i:(3*(i+1)), :]  = (J1[3:6] - J0[3:6])
                    self.dJc[3*i:(3*(i+1)), :] = (dJ1[3:6] - dJ0[3:6])
            i += 1
예제 #2
0
파일: LQPctrl.py 프로젝트: salini/LQPctrl
    def _update_Jc(self):
        """ Extract the Jacobian and dJacobian matrix of contact points.

        """
        self.Jc[:] = 0.
        self.dJc[:] = 0.
        i = 0
        for c in self.constraints:
            if c.is_enabled() and c.is_active() and self.is_enabled[c]:
                frame0, frame1 = c._frames[0], c._frames[1]
                if isinstance(c, PointContact):
                    self.dJc[3*i:(3*(i+1)), :] = frame1.djacobian[3:6] - \
                                                 frame0.djacobian[3:6]
                    if frame1.body in self.bodies:
                        self.Jc[3 * i:(3 * (i + 1)), :] += frame1.jacobian[3:6]
                    if frame0.body in self.bodies:
                        self.Jc[3 * i:(3 * (i + 1)), :] -= frame0.jacobian[3:6]
                elif isinstance(c, BallAndSocketConstraint):
                    H1_0 = dot(inv(frame1.pose), frame0.pose)
                    Ad1_0 = adjoint(H1_0)
                    Ad0_1 = iadjoint(H1_0)
                    T0_g_0 = frame0.twist
                    T1_g_1 = frame1.twist
                    T1_g_0 = dot(Ad0_1, T1_g_1)
                    T0_1_0 = T0_g_0 - T1_g_0
                    J0 = dot(Ad1_0, frame0.jacobian)
                    J1 = frame1.jacobian
                    dJ0 = dot(Ad1_0, frame0.djacobian) + \
                          dot(dAdjoint(Ad1_0, T0_1_0), frame0.jacobian)
                    dJ1 = frame1.djacobian
                    self.Jc[3 * i:(3 * (i + 1)), :] = (J1[3:6] - J0[3:6])
                    self.dJc[3 * i:(3 * (i + 1)), :] = (dJ1[3:6] - dJ0[3:6])
            i += 1
예제 #3
0
 def jacobian(self):
     try:
         return dot(Hg.iadjoint(self._bpose), self._body.jacobian)
     except TypeError:
         raise TypeError(
             "jacobian is not up to date, run world.update_dynamic() first."
         )
예제 #4
0
    def update(self, dt):
        self._CoMPosition[:] = 0.
        self._CoMJacobian[:] = 0.
        self._CoMdJacobian[:] = 0.

        for i in arange(len(self.bodies)):
            H_0_com_i = dot(self.bodies[i].pose, self.H_body_com[i])
            self._CoMPosition += self.mass[i] * H_0_com_i[0:3, 3]

            if self.compute_Jacobians is True:
                ##### For jacobian
                H_com_i_com2 = zeros((4, 4))  #com2 is aligned with ground
                H_com_i_com2[0:3, 0:3] = H_0_com_i[0:3, 0:3].T
                H_com_i_com2[3, 3] = 1.

                Ad_com2_body = iadjoint(dot(self.H_body_com[i], H_com_i_com2))
                self._CoMJacobian[:] += self.mass[i] * dot(
                    Ad_com2_body, self.bodies[i].jacobian)[3:6, :]

                ##### For dJacobian
                T_com2_body = self.bodies[i].twist.copy()
                T_com2_body[3:6] = 0.
                dAd_com2_body = dAdjoint(Ad_com2_body, T_com2_body)
                dJ_com2 = dot(Ad_com2_body, self.bodies[i].djacobian) + dot(
                    dAd_com2_body, self.bodies[i].jacobian)
                self._CoMdJacobian[:] += self.mass[i] * dJ_com2[3:6, :]

        self._CoMPosition /= self.total_mass
        self._CoMJacobian /= self.total_mass
        self._CoMdJacobian /= self.total_mass
예제 #5
0
    def update(self, dt=None):
        """ Compute gravity vector for current state. """
        gforce = zeros(self._wndof)
        for b in self._bodies:
            g       = dot(Hg.iadjoint(b.pose), self._gravity_dtwist)
            gforce += dot(b.jacobian.T, dot(b.mass, g))

        return (gforce, self._impedance)
예제 #6
0
 def djacobian(self):
     try:
         # we assume self._bpose is constant
         return dot(Hg.iadjoint(self._bpose), self._body.djacobian)
     except TypeError:
         raise TypeError(
             "djacobian is not up to date, run world.update_dynamic() first."
         )
예제 #7
0
파일: misc.py 프로젝트: mickey79/LQPctrl
def body_com_properties(body, compute_J=True):
    """ Compute the Center of Mass properties of a body.
    """

    H_body_com = principalframe(body.mass)
    H_0_com = dot(body.pose, H_body_com)
    P_0_com = H_0_com[0:3, 3]

    if compute_J:
        H_com_com2 = inv(H_0_com)
        H_com_com2[0:3, 3] = 0.
        Ad_com2_body = iadjoint(dot(H_body_com, H_com_com2))
        J_com2 = dot(Ad_com2_body, body.jacobian)

        T_com2_body = body.twist.copy()
        T_com2_body[3:6] = 0.
        dAd_com2_body = dAdjoint(Ad_com2_body, T_com2_body)
        dJ_com2 = dot(Ad_com2_body, body.djacobian) + \
                  dot(dAd_com2_body, body.jacobian)
        return P_0_com, J_com2, dJ_com2
    else:
        return P_0_com
예제 #8
0
파일: misc.py 프로젝트: salini/LQPctrl
def body_com_properties(body, compute_J=True):
    """ Compute the Center of Mass properties of a body.
    """

    H_body_com = principalframe(body.mass)
    H_0_com = dot(body.pose, H_body_com)
    P_0_com = H_0_com[0:3, 3]

    if compute_J:
        H_com_com2 = inv(H_0_com)
        H_com_com2[0:3, 3] = 0.
        Ad_com2_body = iadjoint(dot(H_body_com, H_com_com2))
        J_com2 = dot(Ad_com2_body, body.jacobian)

        T_com2_body = body.twist.copy()
        T_com2_body[3:6] = 0.
        dAd_com2_body = dAdjoint(Ad_com2_body, T_com2_body)
        dJ_com2 = dot(Ad_com2_body, body.djacobian) + \
                  dot(dAd_com2_body, body.jacobian)
        return P_0_com, J_com2, dJ_com2
    else:
        return P_0_com
예제 #9
0
def transport_mass_matrix(mass,H):
    """Transport (express) the mass matrix into another frame."""
    Ad = Hg.iadjoint(H)
    return np.dot(
        Ad.transpose(),
        np.dot(mass, Ad))
예제 #10
0
    def update_dynamic(self, pose, jac, djac, twist):
        r"""Sets the body ``pose, jac, djac, twist`` and computes its children ones.

        This method (1) sets the body dynamical model (pose, jacobian,
        hessian and twist) to the values given as argument, (2) computes
        the dynamical model of the children bodies and (3) call the
        equivalent method on them.

        As a result, the dynamical model of all the bodies is computed
        recursively.

        :param pose: the body pose relative to the ground: `H_{gb}`
        :type pose: 4x4 ndarray
        :param jac: the body jacobian relative to the world (in body frame):
            `\J[b]_{b/g}`
        :type jac: 6x(ndof) ndarray
        :param djac: the derivative of the body jacobian: `\dJ[b]_{b/g}`
        :param twist: the body twist: `\twist[b]_{b/g}`
        :type twist: 6 ndarray

        **Algorithm:**

        Let's define the following notations:

        - `g`: the ground body,
        - `p`: the parent body (which is the present :class:`arboris.Body`
          instance)
        - `c`: a child body,
        - `j`: the joint between the bodies `p` and `c`,
        - `r`: reference frame of the joint `j`, rigidly fixed to the parent
          body
        - `n`: new frame of the joint `j`, rigidly fixed to the child body

        .. image:: img/body_model.png

        One can notice that `H_{nc}` and `H_{pr}` are constant.

        The child body pose can be computed as

        .. math::

            H_{gc} &= H_{gp} \; H_{pc} \\
                   &= H_{gp} \; (H_{pr} \; H_{rn} \; H_{nc})

        where `H_{rn}` depends on the joint generalized configuration and is
        given by its :attr:`~arboris.core.Joint.pose` attribute.

        The chil body twist is given as

        .. math::

            \twist[c]_{c/g} &= \Ad[c]_p \; \twist[p]_{p/g} + \twist[c]_{c/p} \\
            &= \Ad[c]_p \; \twist[p]_{p/g} + \Ad[c]_n \; \twist[n]_{n/r} \\
            &= \Ad[c]_p \; \J[p]_{p/g} \; \GVel
               + \Ad[c]_n \; \J[n]_{n/r} \; \GVel_j \\
            &= \J[c]_{c/g} \; \GVel

        where  `\twist[n]_{n/r}` isgiven by the joint
        :attr:`~arboris.core.Joint.twist` attribute.
        \GVel_j is the generalized velocity of the joint `j` and is
        related to the world generalized velocity by trivial projection

        .. math::
            \GVel_j &=
                \begin{bmatrix}
                    0 & \cdots &0 & I & 0 & \cdots & 0
                \end{bmatrix} \; \GVel

        therefore, the child body jacobian is

        .. math::
            \J[c]_{c/g} &= \Ad[c]_p \; \J[p]_{p/g} +
            \begin{bmatrix}
            0 & \cdots & 0 & \Ad[c]_n \; \J[n]_{n/r} & 0 & \cdots & 0
            \end{bmatrix} \\

        where `\J[n]_{n/r}` is given by the joint
        :attr:`~arboris.core.Joint.jacobian` attribute. Derivating the previous
        expression leads to the child body acceleration:

        .. math::
            \dtwist[c]_{c/g} &= \dAd[c]_p \; \J[p]_{p/g} \; \GVel
            + \Ad[c]_p \; \dJ[p]_{p/g} \; \GVel
            + \Ad[c]_p \; \J[p]_g \; \dGVel
            + \Ad[c]_n \; \dJ[n]_{n/r} \; \GVel_j
            + \Ad[c]_n \; \J[n]_{m/r} \dGVel_j \\
            &= \J[c]_{c/g} \; \dGVel + \dJ[c]_{c/g} \; \GVel

        the expression of the child body hessian is then obtained by
        identification:

        .. math::
            \dJ[c]_{c/g} \; \GVel
            &= \dAd[c]_p \; \J[p]_{p/g} \; \GVel
            + \Ad[c]_p \; \dJ[p]_{p/g} \; \GVel
            + \Ad[c]_n \; \dJ[n]_{n/r} \; \GVel_j \\

            \dJ[c]_{c/g}
            &= \dAd[c]_p \; \J[p]_{p/g} + \Ad[c]_p \; \dJ[p]_{p/g} +
            \begin{bmatrix}
            0 & \cdots & 0 & (\Ad[c]_n \; \dJ[n]_{n/r}) & 0 & \cdots & 0
            \end{bmatrix}

        with

        .. math::
            \dAd[c]_p &= \Ad[c]_n \; \dAd[n]_r \; \Ad[r]_p

        and where `\dAd[n]_r` and `\dJ[n]_{n/r}` are respectively given by
        the joint :attr:`~arboris.core.Joint.idadjoint` and
        :attr:`~arboris.core.Joint.djacobian` attributes.

        T_ab: velocity of {a} relative to {b} expressed in {a} (body twist)
        """
        self._pose = pose
        self._jacobian = jac
        self._djacobian = djac
        self._twist = twist
        wx = array(
            [[             0, -self.twist[2],  self.twist[1]],
             [ self.twist[2],              0, -self.twist[0]],
             [-self.twist[1],  self.twist[0],              0]])
        if self.mass[3, 3] <= 1e-10: #TODO: avoid hardcoded value
            rx = zeros((3, 3))
        else:
            rx = self.mass[0:3, 3:6]/self.mass[3,3] #TODO: better solution?
        self._nleffects = zeros((6, 6))
        self._nleffects[0:3, 0:3] = wx
        self._nleffects[3:6, 3:6] = wx
        self._nleffects[0:3, 3:6] = dot(rx, wx) - dot(wx, rx)
        self._nleffects = dot(self.nleffects, self.mass)

        H_gp = pose
        J_pg = jac
        dJ_pg = djac
        T_pg = twist
        for j in self.childrenjoints:
            H_cn = j._frame1.bpose
            H_pr = j._frame0.bpose
            H_rn = j.pose
            H_pc = dot(H_pr, dot(H_rn, Hg.inv(H_cn)))
            child_pose = dot(H_gp, H_pc)
            Ad_cp = Hg.iadjoint(H_pc)
            Ad_cn = Hg.adjoint(H_cn)
            Ad_rp = Hg.adjoint(Hg.inv(H_pr))
            dAd_nr = j.idadjoint
            dAd_cp = dot(Ad_cn, dot(dAd_nr, Ad_rp))
            T_nr = j.twist
            J_nr = j.jacobian
            dJ_nr = j.djacobian
            child_twist = dot(Ad_cp, T_pg) + dot(Ad_cn, T_nr)
            child_jac = dot(Ad_cp, J_pg)
            child_jac[:,j.dof] += dot(Ad_cn, J_nr)

            child_djac = dot(dAd_cp, J_pg) + dot(Ad_cp, dJ_pg)
            child_djac[:, j.dof] += dot(Ad_cn, dJ_nr)
            j._frame1.body.update_dynamic(child_pose, child_jac, child_djac,
                                          child_twist)
예제 #11
0
 def djacobian(self):
     # we assume self._bpose is constant
     return dot(Hg.iadjoint(self._bpose), self._body._djacobian)
예제 #12
0
 def jacobian(self):
     return dot(Hg.iadjoint(self._bpose), self._body._jacobian)
예제 #13
0
 def twist(self):
     try:
         return dot(Hg.iadjoint(self._bpose), self._body.twist)
     except TypeError:
         raise TypeError(
             "twist is not up to date, run world.update_dynamic() first.")
예제 #14
0
 def jacobian(self):
     try:
         return dot(Hg.iadjoint(self._bpose), self._body.jacobian)
     except TypeError:
         raise TypeError("jacobian is not up to date, run world.update_dynamic() first.")
예제 #15
0
    def update_dynamic(self, pose, jac, djac, twist):
        r""" Compute the body ``pose, jac, djac, twist`` and its children ones.

        This method (1) sets the body dynamical model (pose, jacobian,
        hessian and twist) to the values given as argument, (2) computes
        the dynamical model of the children bodies and (3) call the
        equivalent method on them.

        As a result, the dynamical model of all the bodies is computed
        recursively.

        :param pose: the body pose relative to the ground: `H_{gb}`
        :type pose: 4x4 ndarray
        :param jac: the body jacobian relative to the world (in body frame):
            `\J[b]_{b/g}`
        :type jac: 6x(ndof) ndarray
        :param djac: the derivative of the body jacobian: `\dJ[b]_{b/g}`
        :param twist: the body twist: `\twist[b]_{b/g}`
        :type twist: 6 ndarray

        **Algorithm:**

        Let's define the following notations:

        - `g`: the ground body,
        - `p`: the parent body (which is the present :class:`arboris.Body`
          instance)
        - `c`: a child body,
        - `j`: the joint between the bodies `p` and `c`,
        - `r`: reference frame of the joint `j`, rigidly fixed to the parent
          body
        - `n`: new frame of the joint `j`, rigidly fixed to the child body

        .. image:: img/body_model.svg
           :width: 300px

        One can notice that `H_{nc}` and `H_{pr}` are constant.

        The child body pose can be computed as

        .. math::

            H_{gc} &= H_{gp} \; H_{pc} \\
                   &= H_{gp} \; (H_{pr} \; H_{rn} \; H_{nc})

        where `H_{rn}` depends on the joint generalized configuration and is
        given by its :attr:`~arboris.core.Joint.pose` attribute.

        The chil body twist is given as

        .. math::

            \twist[c]_{c/g} &= \Ad_{cp} \; \twist[p]_{p/g} + \twist[c]_{c/p} \\
            &= \Ad_{cp} \; \twist[p]_{p/g} + \Ad_{cn} \; \twist[n]_{n/r} \\
            &= \Ad_{cp} \; \J[p]_{p/g} \; \GVel
               + \Ad_{cn} \; \J[n]_{n/r} \; \GVel_j \\
            &= \J[c]_{c/g} \; \GVel

        where  `\twist[n]_{n/r}` is given by the joint
        :attr:`~arboris.core.Joint.twist` attribute.
        `\GVel_j` is the generalized velocity of the joint `j` and is
        related to the world generalized velocity by trivial projection

        .. math::
            \GVel_j &=
                \begin{bmatrix}
                    0 & \cdots &0 & I & 0 & \cdots & 0
                \end{bmatrix} \; \GVel

        therefore, the child body jacobian is

        .. math::
            \J[c]_{c/g} &= \Ad_{cp} \; \J[p]_{p/g} +
            \begin{bmatrix}
            0 & \cdots & 0 & \Ad_{cn} \; \J[n]_{n/r} & 0 & \cdots & 0
            \end{bmatrix} \\

        where `\J[n]_{n/r}` is given by the joint
        :attr:`~arboris.core.Joint.jacobian` attribute. Derivating the previous
        expression leads to the child body acceleration:

        .. math::
            \dtwist[c]_{c/g} &= \dAd_{cp} \; \J[p]_{p/g} \; \GVel
            + \Ad_{cp} \; \dJ[p]_{p/g} \; \GVel
            + \Ad_{cp} \; \J[p]_g \; \dGVel
            + \Ad_{cn} \; \dJ[n]_{n/r} \; \GVel_j
            + \Ad_{cn} \; \J[n]_{m/r} \dGVel_j \\
            &= \J[c]_{c/g} \; \dGVel + \dJ[c]_{c/g} \; \GVel

        the expression of the child body hessian is then obtained by
        identification:

        .. math::
            \dJ[c]_{c/g} \; \GVel
            &= \dAd_{cp} \; \J[p]_{p/g}  \; \GVel
            +  \Ad_{cp}  \; \dJ[p]_{p/g} \; \GVel
            +  \Ad_{cn}  \; \dJ[n]_{n/r} \; \GVel_j \\

            \dJ[c]_{c/g}
            &= \dAd_{cp} \; \J[p]_{p/g} + \Ad_{cp} \; \dJ[p]_{p/g} +
            \begin{bmatrix}
            0 & \cdots & 0 & (\Ad_{cn} \; \dJ[n]_{n/r}) & 0 & \cdots & 0
            \end{bmatrix}

        with

        .. math::
            \dAd_{cp} &= \Ad_{cn} \; \dAd_{nr} \; \Ad_{rp}

        and where `\dAd_{nr}` and `\dJ[n]_{n/r}` are respectively given by
        the joint :attr:`~arboris.core.Joint.idadjoint` and
        :attr:`~arboris.core.Joint.djacobian` attributes.

        T_ab: velocity of {a} relative to {b} expressed in {a} (body twist)
        """
        self._pose = pose
        self._jacobian = jac
        self._djacobian = djac
        self._twist = twist
        wx = array([[0, -self.twist[2], self.twist[1]],
                    [self.twist[2], 0, -self.twist[0]],
                    [-self.twist[1], self.twist[0], 0]])
        if self.mass[5, 5] <= 1e-10:  #TODO: avoid hardcoded value
            rx = zeros((3, 3))
        else:
            rx = self.mass[0:3, 3:6] / self.mass[5, 5]
        self._nleffects = zeros((6, 6))
        self._nleffects[0:3, 0:3] = wx
        self._nleffects[3:6, 3:6] = wx
        self._nleffects[0:3, 3:6] = dot(rx, wx) - dot(wx, rx)
        self._nleffects = dot(self.nleffects, self.mass)

        H_gp = pose
        J_pg = jac
        dJ_pg = djac
        T_pg = twist
        for j in self.childrenjoints:
            H_cn = j.frame1.bpose
            H_pr = j.frame0.bpose
            H_rn = j.pose
            H_pc = dot(H_pr, dot(H_rn, Hg.inv(H_cn)))
            child_pose = dot(H_gp, H_pc)
            Ad_cp = Hg.iadjoint(H_pc)
            Ad_cn = Hg.adjoint(H_cn)
            Ad_rp = Hg.adjoint(Hg.inv(H_pr))
            dAd_nr = j.idadjoint
            dAd_cp = dot(Ad_cn, dot(dAd_nr, Ad_rp))
            T_nr = j.twist
            J_nr = j.jacobian
            dJ_nr = j.djacobian
            child_twist = dot(Ad_cp, T_pg) + dot(Ad_cn, T_nr)
            child_jac = dot(Ad_cp, J_pg)
            child_jac[:, j.dof] += dot(Ad_cn, J_nr)

            child_djac = dot(dAd_cp, J_pg) + dot(Ad_cp, dJ_pg)
            child_djac[:, j.dof] += dot(Ad_cn, dJ_nr)
            j.frame1.body.update_dynamic(child_pose, child_jac, child_djac,
                                         child_twist)
예제 #16
0

isHM =Hg.ishomogeneousmatrix(H_o_b)   # check validity of homogeneous matrix
print("is homogeneous matrix?", isHM)


p_b = np.array([.4,.5,.6])         # point p expressed in frame {b}
p_o = Hg.pdot(H_o_b, p_b)       # point p expressed in frame {o}


v_b = np.array([.4,.5,.6])         # idem for vector, here affine part is not
v_o = Hg.vdot(H_o_b, v_b)       # taken into account


Ad_o_b = Hg.adjoint(H_o_b)      # to obtain the adjoint related to displacement
Ad_b_o = Hg.iadjoint(H_o_b)     # to obtain the adjoint of the inverse




##### About adjoint matrix #####################################################

import arboris.adjointmatrix as Adm


isAd = Adm.isadjointmatrix(Ad_b_o)  # check validity of adjoint matrix
print("is adjoint matrix?", isAd)


Ad_b_o = Adm.inv(Ad_o_b)            # get inverse of adjoint matrix
예제 #17
0
 def twist(self):
     return dot(Hg.iadjoint(self._bpose), self._body._twist)
예제 #18
0
 def twist(self):
     try:
         return dot(Hg.iadjoint(self._bpose), self._body.twist)
     except TypeError:
         raise TypeError("twist is not up to date, run world.update_dynamic() first.")
예제 #19
0
 def djacobian(self):
     try:
         # we assume self._bpose is constant
         return dot(Hg.iadjoint(self._bpose), self._body.djacobian)
     except TypeError:
         raise TypeError("djacobian is not up to date, run world.update_dynamic() first.")