def main(): args = get_args() files = args.files lang = args.lang mode = args.mode if mode == Mode.audio_file: parse_audio_files(files, lang) else: parse_live_speech(args)
updates = lasagne.updates.sgd(loss, params, args.learning_rate) elif args.optimizer == 'momentum': updates = lasagne.updates.momentum(loss, params, args.learning_rate) train_fn = theano.function([word_x, word_mask, sent_mask, label_y], loss, updates=updates) prediction = lasagne.layers.get_output(network_output, deterministic=True) eval_fn = theano.function([word_x, word_mask, sent_mask], prediction) fn_check_attention = theano.function([word_x, word_mask, sent_mask], att_out) return fn_check_attention, eval_fn, train_fn, params if __name__ == '__main__': args = ap.get_args() logging.basicConfig(level=logging.DEBUG, format="%(asctime)s %(message)s", datefmt="%m-%d %H:%M") logging.basicConfig(level=logging.DEBUG, format="%(asctime)s %(message)s", datefmt="%m-%d %H:%M") logging.info(' '.join(sys.argv)) # args.debug=True args.word_att = "dot" args.batch_size = 14 # args.optimizer = "momentum" args.learning_rate = 0.2 args.dropout_rate = 0.5 main(args)
import sys, json from collections import defaultdict import matplotlib.pyplot as plt import networkx as nx from arg_parser import drawer_argparse as get_args from draw_config import config args = vars(get_args()) sample_file = args['sample'] img_file = args['image'] drawing_mode = args['mode'] graph = nx.Graph() with open(sample_file, 'r') as fd: data = json.loads(fd.read()[11:]) tdata = defaultdict(list) for e in data['data']: w = e[2]*10 graph.add_edge(e[0], e[1], weight=w) tdata[w].append((e[0], e[1])) plt.figure(1, figsize=(14, 14)) plt.axis('off') plt.title('%s (%i ingredients)' % (data['props']['ftype'], data['props']['inum']))
if __name__ == "__main__": """ App that performs the following tasks: - Load a dataset - Process the dataset - Train a model - Evaluate the model - Save the model """ spark = SparkSession \ .builder \ .appName("form_completion_rate") \ .getOrCreate() args = arg_parser.get_args() if args.debug: print("Using debug mode") df = dataset.load_dataset(spark, args.datasetPath, args.debug) df_processed = processing.transform(df, args.debug) train_df, test_df = df_processed.randomSplit([0.8, 0.2], seed=42) cv = model_selection.cross_validation(train_df, args.debug) model = cv.bestModel model_path = OUTPUT_DIR.joinpath("model") print("Saving best model at {}".format(model_path))
# from transformers import AlbertConfig, AlbertTokenizer # from transformers import XLNetConfig, XLNetTokenizer from transformers import LongformerConfig, LongformerTokenizer from utils import metrics from arg_parser import get_args from data_loader import DocDataset, PadDoc from model import BertPoolLSTM, BertPoolConv, BertPoolLinear # AlbertLinear, AlbertLSTM from model_lfmr import LongformerLinear # from model_xlnet import XLNetLinear, XLNetLSTM, XLNetConv from train import train_evaluate, test #%% Setting # Get arguments from command line args = get_args() # random seed random.seed(args.seed) #np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed_all(args.seed) torch.cuda.manual_seed(args.seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # This makes things slower # device if torch.cuda.device_count() > 1: device = torch.cuda.current_device() print('Use {} GPUs: '.format(torch.cuda.device_count()), device) elif torch.cuda.device_count() == 1:
def main(): args = get_args() wt_gen = WorkingTimeGenerator(*args.month, args.range, args.worker, args.furlough, args.work) wt_gen.write_workbook()
import os from scraper import scrape from file_dl import main as download from arg_parser import main as get_args args = get_args() file_dir = os.path.expanduser("./downloads") if not os.path.exists(file_dir): os.mkdir(file_dir) count = 0 for file in args.files: file_name = download(scrape(file), file_dir) if file_name is not None: count += 1 print('Downloaded {0} as {1}'.format(file, file_name)) else: print('Could not download {0} - invalid IG code or file already exists' .format(file)) print('Downloaded {0} files to {1}'.format(count, file_dir))
import tensorflow as tf import time import alpha_vantage_key import arg_parser import plotter #import weather from alpha_vantage.timeseries import TimeSeries from bokeh.models import LinearAxis from bokeh.palettes import Spectral11 from bokeh.plotting import figure, show, output_file from pprint import pprint from sklearn import preprocessing config_folder, refresh, plot_inputs, plot_results, test_model, train_model, max_epoch, init_learning_rate, init_eopch, weather_data, ticker = arg_parser.get_args() cwd = os.getcwd() if not config_folder and refresh: today = time.strftime('%d-%m-%Y') config_folder = f'{ticker}_{today}' elif not config_folder and not refresh: all_subdirs = [d for d in os.listdir(cwd) if os.path.isdir(d) and re.match(r'.{1,6}_[0-9]{2}-[0-9]{2}-[0-9]{4}', d)] print(all_subdirs) config_folder = max(all_subdirs, key=os.path.getmtime) config_path = os.path.join(cwd, config_folder, f'{ticker}_trader_config.pkl') data_path = os.path.join(cwd, config_folder, f'{ticker}_data.pkl') meta_data_path = os.path.join(cwd, config_folder, f'{ticker}_meta_data.pkl') plot_path = os.path.join(cwd, 'plots') latest_data_path = os.path.join(cwd, config_folder)
def run(): """ Main process that\: * Parse command-line arguments, * Parse configuration file, * Initiates logger, * Check Handle Service connection, * Run the issue action. """ try: # Get command-line arguments args = get_args() # init logging if args.version and args.log is not None: _init_logging(args.log, level='DEBUG') elif args.log is not None: _init_logging(args.log) else: _init_logging() if args.command == CHANGEPASS: if args.oldpass is not None and args.newpass is not None: _reset_passphrase(old_pass=args.oldpass, new_pass=args.newpass) else: _reset_passphrase() elif args.command == CREDSET: if args.username is not None and args.token is not None: _set_credentials(username=args.username, token=args.token) else: _set_credentials() elif args.command == CREDREMOVE: _reset_credentials() elif args.command == CREDTEST: _cred_test(args.institute, args.project, args.passphrase) elif args.command == CHECK: result = _check_pid(",".join(args.id), args.full, args.latest) # result printing. # For the time being bare print. Need better method for this. for element in result: print element # Retrieve command has a slightly different behavior from the rest so it's singled out elif args.command not in [RETRIEVE, CLOSE]: issue_file = _get_issue(args.issue) dataset_file = _get_datasets(args.dsets) process_command(command=args.command, issue_file=issue_file, dataset_file=dataset_file, issue_path=args.issue, dataset_path=args.dsets) elif args.command == CLOSE: issue_file = _get_issue(args.issue) dataset_file = _get_datasets(args.dsets) process_command(command=args.command, issue_file=issue_file, dataset_file=dataset_file, issue_path=args.issue, dataset_path=args.dsets, status=args.status) elif args.command == RETRIEVE: list_of_id = _prepare_retrieve_ids(args.id) if len(list_of_id) >= 1: process_command(command=RETRIEVE, issue_path=args.issues, dataset_path=args.dsets, list_of_ids=list_of_id) else: process_command(command=RETRIEVE_ALL, issue_path=args.issues, dataset_path=args.dsets) except KeyboardInterrupt: print('Keyboard interruption, exiting...')