def test_trans_single(self): """ Calculate transition probabilities Only calculate a single matrix """ k = 4 n = 1e4 rho = 1.5e-8 mu = 2.5e-8 length = 1000 arg = arglib.sample_arg(k, n, rho, start=0, end=length) muts = arglib.sample_arg_mutations(arg, mu) seqs = arglib.make_alignment(arg, muts) times = arghmm.get_time_points(10) arghmm.discretize_arg(arg, times) print "recomb", arglib.get_recomb_pos(arg) new_name = "n%d" % (k - 1) arg = arghmm.remove_arg_thread(arg, new_name) model = arghmm.ArgHmm(arg, seqs, new_name=new_name, times=times) pos = 10 tree = arg.get_marginal_tree(pos) mat = arghmm.calc_transition_probs(tree, model.states[pos], model.nlineages, model.times, model.time_steps, model.popsizes, rho) print model.states[pos] pc(mat) for row in mat: print sum(map(exp, row))
def test_trans_single(self): """ Calculate transition probabilities Only calculate a single matrix """ k = 4 n = 1e4 rho = 1.5e-8 mu = 2.5e-8 length = 1000 arg = arglib.sample_arg(k, n, rho, start=0, end=length) muts = arglib.sample_arg_mutations(arg, mu) seqs = arglib.make_alignment(arg, muts) times = arghmm.get_time_points(10) arghmm.discretize_arg(arg, times) print "recomb", arglib.get_recomb_pos(arg) new_name = "n%d" % (k-1) arg = arghmm.remove_arg_thread(arg, new_name) model = arghmm.ArgHmm(arg, seqs, new_name=new_name, times=times) pos = 10 tree = arg.get_marginal_tree(pos) mat = arghmm.calc_transition_probs( tree, model.states[pos], model.nlineages, model.times, model.time_steps, model.popsizes, rho) print model.states[pos] pc(mat) for row in mat: print sum(map(exp, row))
def test_trans2(self): """ Calculate transition probabilities for k=2 Only calculate a single matrix """ k = 2 n = 1e4 rho = 1.5e-8 * 20 mu = 2.5e-8 * 20 length = 1000 times = arghmm.get_time_points(ntimes=5, maxtime=200000) arg = arglib.sample_arg(k, 2 * n, rho, start=0, end=length) muts = arglib.sample_arg_mutations(arg, mu) seqs = arglib.make_alignment(arg, muts) arghmm.discretize_arg(arg, times) print "recomb", arglib.get_recomb_pos(arg) new_name = "n%d" % (k - 1) arg = arghmm.make_trunk_arg(0, length, "n0") model = arghmm.ArgHmm(arg, seqs, new_name=new_name, popsize=n, rho=rho, mu=mu, times=times) pos = 10 tree = arg.get_marginal_tree(pos) model.check_local_tree(pos, force=True) mat = arghmm.calc_transition_probs(tree, model.states[pos], model.nlineages, model.times, model.time_steps, model.popsizes, rho) states = model.states[pos] nstates = len(states) def coal(j): return 1.0 - exp(-model.time_steps[j] / (2.0 * n)) def recoal2(k, j): p = coal(j) for m in range(k, j): p *= 1.0 - coal(m) return p def recoal(k, j): if j == nstates - 1: return exp(-sum(model.time_steps[m] / (2.0 * n) for m in range(k, j))) else: return ((1.0 - exp(-model.time_steps[j] / (2.0 * n))) * exp(-sum(model.time_steps[m] / (2.0 * n) for m in range(k, j)))) def isrecomb(i): return 1.0 - exp(-max(rho * 2.0 * model.times[i], rho)) def recomb(i, k): treelen = 2 * model.times[i] + model.time_steps[i] if k < i: return 2.0 * model.time_steps[k] / treelen / 2.0 else: return model.time_steps[k] / treelen / 2.0 def trans(i, j): a = states[i][1] b = states[j][1] p = sum( recoal(k, b) * recomb(a, k) for k in range(0, min(a, b) + 1)) p += sum( recoal(k, b) * recomb(a, k) for k in range(0, min(a, b) + 1)) p *= isrecomb(a) if i == j: p += 1.0 - isrecomb(a) return p for i in range(len(states)): for j in range(len(states)): print isrecomb(states[i][1]) print states[i], states[j], mat[i][j], log(trans(i, j)) fequal(mat[i][j], log(trans(i, j))) # recombs add up to 1 fequal(sum(recomb(i, k) for k in range(i + 1)), 0.5) # recoal add up to 1 fequal(sum(recoal(i, j) for j in range(i, nstates)), 1.0) # recomb * recoal add up to .5 fequal( sum( sum( recoal(k, j) * recomb(i, k) for k in range(0, min(i, j) + 1)) for j in range(0, nstates)), 0.5) fequal(sum(trans(i, j) for j in range(len(states))), 1.0)
def test_trans2(self): """ Calculate transition probabilities for k=2 Only calculate a single matrix """ k = 2 n = 1e4 rho = 1.5e-8 * 20 mu = 2.5e-8 * 20 length = 1000 times = arghmm.get_time_points(ntimes=5, maxtime=200000) arg = arglib.sample_arg(k, 2*n, rho, start=0, end=length) muts = arglib.sample_arg_mutations(arg, mu) seqs = arglib.make_alignment(arg, muts) arghmm.discretize_arg(arg, times) print "recomb", arglib.get_recomb_pos(arg) new_name = "n%d" % (k-1) arg = arghmm.make_trunk_arg(0, length, "n0") model = arghmm.ArgHmm(arg, seqs, new_name=new_name, popsize=n, rho=rho, mu=mu, times=times) pos = 10 tree = arg.get_marginal_tree(pos) model.check_local_tree(pos, force=True) mat = arghmm.calc_transition_probs( tree, model.states[pos], model.nlineages, model.times, model.time_steps, model.popsizes, rho) states = model.states[pos] nstates = len(states) def coal(j): return 1.0 - exp(-model.time_steps[j]/(2.0 * n)) def recoal2(k, j): p = coal(j) for m in range(k, j): p *= 1.0 - coal(m) return p def recoal(k, j): if j == nstates-1: return exp(- sum(model.time_steps[m] / (2.0 * n) for m in range(k, j))) else: return ((1.0 - exp(-model.time_steps[j]/(2.0 * n))) * exp(- sum(model.time_steps[m] / (2.0 * n) for m in range(k, j)))) def isrecomb(i): return 1.0 - exp(-max(rho * 2.0 * model.times[i], rho)) def recomb(i, k): treelen = 2*model.times[i] + model.time_steps[i] if k < i: return 2.0 * model.time_steps[k] / treelen / 2.0 else: return model.time_steps[k] / treelen / 2.0 def trans(i, j): a = states[i][1] b = states[j][1] p = sum(recoal(k, b) * recomb(a, k) for k in range(0, min(a, b)+1)) p += sum(recoal(k, b) * recomb(a, k) for k in range(0, min(a, b)+1)) p *= isrecomb(a) if i == j: p += 1.0 - isrecomb(a) return p for i in range(len(states)): for j in range(len(states)): print isrecomb(states[i][1]) print states[i], states[j], mat[i][j], log(trans(i, j)) fequal(mat[i][j], log(trans(i, j))) # recombs add up to 1 fequal(sum(recomb(i, k) for k in range(i+1)), 0.5) # recoal add up to 1 fequal(sum(recoal(i, j) for j in range(i, nstates)), 1.0) # recomb * recoal add up to .5 fequal(sum(sum(recoal(k, j) * recomb(i, k) for k in range(0, min(i, j)+1)) for j in range(0, nstates)), 0.5) fequal(sum(trans(i, j) for j in range(len(states))), 1.0)