예제 #1
0
def test_ffmpeg_seq_frame_vid_smokescreen() -> None:
    """Test writing video consecutive, nanosecond, integer timestamps in `ffmpeg`."""
    image_prefix = "imgs_%d.jpg"
    output_prefix = "out"
    write_video(image_prefix, output_prefix)
예제 #2
0
    def plot_log_one_at_a_time(self,
                               log_id="",
                               idx=-1,
                               save_video=True,
                               city=""):
        """
        Playback a log in the static context of a map.
        In the far left frame, we show the car moving in the map. In the middle frame, we show
        the car's LiDAR returns (in the map frame). In the far right frame, we show the front camera's
        RGB image.
        """
        avm = ArgoverseMap()
        for city_name, trajs in self.per_city_traj_dict.items():
            if city != "":
                if city != city_name:
                    continue
            if city_name not in ["PIT", "MIA"]:
                logger.info("Unknown city")
                continue

            log_ids = []
            logger.info(f"{city_name} has {len(trajs)} tracks")

            if log_id == "":
                # first iterate over the instance axis
                for traj_idx, (traj, log_id) in enumerate(trajs):
                    log_ids += [log_id]
            else:
                log_ids = [log_id]

            # eliminate the duplicates
            for log_id in set(log_ids):
                logger.info(f"Log: {log_id}")

                ply_fpaths = sorted(
                    glob.glob(f"{self.dataset_dir}/{log_id}/lidar/PC_*.ply"))

                # then iterate over the time axis
                for i, ply_fpath in enumerate(ply_fpaths):
                    if idx != -1:
                        if i != idx:
                            continue
                    if i % 500 == 0:
                        logger.info(f"\tOn file {i} of {log_id}")
                    lidar_timestamp = ply_fpath.split("/")[-1].split(
                        ".")[0].split("_")[-1]
                    lidar_timestamp = int(lidar_timestamp)
                    print("Lidar timestamp = ",
                          lidar_timestamp)  # added by Yike
                    print("Log Egopose Dict = ", self.log_egopose_dict)

                    if lidar_timestamp not in self.log_egopose_dict[log_id]:
                        all_available_timestamps = sorted(
                            self.log_egopose_dict[log_id].keys())
                        diff = (all_available_timestamps[0] -
                                lidar_timestamp) / 1e9
                        logger.info(
                            f"{diff:.2f} sec before first labeled sweep")
                        continue

                    logger.info(f"\tt={lidar_timestamp}")
                    if self.plot_lidar_bev:
                        fig = plt.figure(figsize=(15, 15))
                        plt.title(
                            f"Log {log_id} @t={lidar_timestamp} in {city_name}"
                        )
                        plt.axis("off")
                        # ax_map = fig.add_subplot(131)
                        ax_3d = fig.add_subplot(111)
                        # ax_rgb = fig.add_subplot(133)
                        plt.ion()  # added by Yike

                    # need the ego-track here
                    pose_city_to_ego = self.log_egopose_dict[log_id][
                        lidar_timestamp]
                    xcenter = pose_city_to_ego["translation"][0]
                    ycenter = pose_city_to_ego["translation"][1]
                    ego_center_xyz = np.array(pose_city_to_ego["translation"])

                    city_to_egovehicle_se3 = SE3(
                        rotation=pose_city_to_ego["rotation"],
                        translation=ego_center_xyz)

                    if self.plot_lidar_bev:
                        xmin = xcenter - 80  # 150
                        xmax = xcenter + 80  # 150
                        ymin = ycenter - 80  # 150
                        ymax = ycenter + 80  # 150
                        # ax_map.scatter(xcenter, ycenter, 200, color="g", marker=".", zorder=2)
                        # ax_map.set_xlim([xmin, xmax])
                        # ax_map.set_ylim([ymin, ymax])
                        local_lane_polygons = avm.find_local_lane_polygons(
                            [xmin, xmax, ymin, ymax], city_name)
                        local_das = avm.find_local_driveable_areas(
                            [xmin, xmax, ymin, ymax], city_name)

                    lidar_pts = load_ply(ply_fpath)
                    if self.plot_lidar_in_img:
                        draw_ground_pts_in_image(
                            self.sdb,
                            copy.deepcopy(lidar_pts),
                            city_to_egovehicle_se3,
                            avm,
                            log_id,
                            lidar_timestamp,
                            city_name,
                            self.dataset_dir,
                            self.experiment_prefix,
                            plot_ground=True,
                        )

                    if self.plot_lidar_bev:
                        driveable_area_pts = copy.deepcopy(lidar_pts)
                        driveable_area_pts = city_to_egovehicle_se3.transform_point_cloud(
                            driveable_area_pts)  # put into city coords
                        driveable_area_pts = avm.remove_non_driveable_area_points(
                            driveable_area_pts, city_name)
                        driveable_area_pts = avm.remove_ground_surface(
                            driveable_area_pts, city_name)
                        driveable_area_pts = city_to_egovehicle_se3.inverse_transform_point_cloud(
                            driveable_area_pts
                        )  # put back into ego-vehicle coords
                        self.render_bev_labels_mpl(
                            city_name,
                            ax_3d,
                            "ego_axis",
                            lidar_pts,
                            copy.deepcopy(local_lane_polygons),
                            copy.deepcopy(local_das),
                            log_id,
                            lidar_timestamp,
                            city_to_egovehicle_se3,
                            avm,
                        )

                        fig.tight_layout()
                        if not Path(
                                f"{self.experiment_prefix}_per_log_viz/{log_id}"
                        ).exists():
                            os.makedirs(
                                f"{self.experiment_prefix}_per_log_viz/{log_id}"
                            )

                        plt.savefig(
                            f"{self.experiment_prefix}_per_log_viz/{log_id}/{city_name}_{log_id}_{lidar_timestamp}.png",
                            dpi=400,
                        )
                    # plt.show()
                    # plt.close("all")

                # after all frames are processed, write video with saved images
                if save_video:
                    if self.plot_lidar_bev:
                        fps = 10
                        img_wildcard = f"{self.experiment_prefix}_per_log_viz/{log_id}/{city_name}_{log_id}_%*.png"
                        output_fpath = f"{self.experiment_prefix}_per_log_viz/{log_id}_lidar_roi_nonground.mp4"
                        write_nonsequential_idx_video(img_wildcard,
                                                      output_fpath, fps)

                    if self.plot_lidar_in_img:
                        for camera_name in RING_CAMERA_LIST + STEREO_CAMERA_LIST:
                            image_prefix = (
                                f"{self.experiment_prefix}_per_log_viz/{log_id}/{camera_name}/{camera_name}_%d.jpg"
                            )
                            output_prefix = f"{self.experiment_prefix}_per_log_viz/{log_id}_{camera_name}"
                            write_video(image_prefix, output_prefix)
예제 #3
0
def test_ffmpeg_seq_frame_vid_smokescreen():
    """
        """
    image_prefix = "imgs_%d.jpg"
    output_prefix = "out"
    write_video(image_prefix, output_prefix)