def console_report(): """Runs a report from the cli.""" args = parser.parse_args() conf = config.load(args.config_file) logger.setLevel(LOG_LEVELS.get(args.log_level.lower(), 'info')) manager = ClientManager(**conf.get('auth_kwargs', {})) ceilometer = manager.get_ceilometer() if args.mtd: start, stop = utils.mtd_range() elif args.today: start, stop = utils.today_range() elif args.last_hour: start, stop = utils.last_hour_range() else: start, stop = utils.mtd_range() r = Report( ceilometer, args.definition_filename, args.csv_filename, start=start, stop=stop ) r.run()
def test(): logger.info("Starting test...") args = argparser.parse_args() conf = config.load(args.config_file) auth_kwargs = config.get('auth_kwargs', {}) clients = ClientManager(**config.get('auth_kwargs', {})) volume_delete(clients, conf)
def run(): logger.info("Starting randomload...") actions = [ server_create, server_delete, image_create, image_delete, volume_create, volume_delete ] args = argparser.parse_args() conf = config.load(args.config_file) interval = conf.get('interval', 60) clients = ClientManager(**conf.get('auth_kwargs', {})) last_action_time = 0 while True: now = time.time() if now - last_action_time > interval: action = utils.randomfromlist(actions) try: action(clients, conf=conf) except Exception as e: print e last_action_time = time.time() time.sleep(1)
from args import parser, get_config_module import hashlib import hmac import sys import requests import urllib parser.add_argument("path", metavar="P", type=str, help="Path to query metadata of") vals = parser.parse_args() config = get_config_module(vals.config) path = vals.path try: from config import app_config key = app_config["PUBLISHER_SECRET_KEY"] root = app_config.get("APPLICATION_ROOT", "") except ImportError, KeyError: print "Unable to retrieve secret key for metadata request" sys.exit(1) try: from config import host_config if "host" in host_config: host = host_config["host"] else: host = "127.0.0.1" if "port" in host_config: port = host_config["port"] else: port = 8000
# Save all tenant stats v, m, s = r.active_stats() print ("Active vcpus", v) print ("Active memory MB", m) print ("Active storage GB", s) all_tenant = Tenant.get_or_create(session, all_tenant_id) session.commit() session.add(ActiveVCPUS( value=v, time=now, tenant_id=all_tenant.id )) session.add(ActiveMemoryMB( value=m, time=now, tenant_id=all_tenant.id )) session.add(ActiveLocalStorageGB( value=s, time=now, tenant_id=all_tenant.id )) last_polled = time.time() print ("Updating polling interval") time.sleep(1) exit() # Parse arguments and then take action. args = argparser.parse_args() if args.subcommand == 'report': report(args) elif args.subcommand == 'agent': agent(args)
import numpy as np import pandas as pd import librosa import os import pywt import cv2 as cvlib from args import parser import matplotlib.pyplot as plt args = parser.parse_args() #normalize each colour image between -1 and 1 def normalize_data_all_gather(vect_in, out_min, out_max, percent_acceptation=80, not_clip_until_acceptation_time_factor=1.5): # nb_dim = len(vect_in.shape) percent_val = np.percentile(abs(vect_in).reshape((vect_in.shape[0], vect_in.shape[1] * vect_in.shape[2])), percent_acceptation, axis=1) percent_val_matrix = not_clip_until_acceptation_time_factor * np.repeat(percent_val, vect_in.shape[1] * vect_in.shape[2], axis=0).reshape( (vect_in.shape[0], vect_in.shape[1], vect_in.shape[2])) matrix_clip = np.maximum(np.minimum(vect_in, percent_val_matrix), -percent_val_matrix) return np.divide(matrix_clip, percent_val_matrix) * ((out_max - out_min) / 2) + (out_max + out_min) / 2 # Read data from file 'filename.csv' path_liste_file= args.audio_listefile_folder_path # Control delimiters, rows, column names with read_csv (see later) #data = pd.read_csv("/Users/vincentbelz/Documents/Data/audio_classification/liste_file/esc50.csv") data = pd.read_csv(path_liste_file) # Preview the first 5 lines of the loaded data
for key, value in zip(fields, values.groups()): if key: setTag(id3, key, value) def main(options): music = findMusic(options.paths) for i, tags in enumerate(music): try: for tag in options.tags: if tag[0].startswith("auto"): autoTag(tags, tag[1], tags.file) else: setTag(tags, tag[0], tag[1]) sys.stdout.write("\r\x1B[K[%d/%d] %s " % (i, len(music), tags.file)) sys.stdout.flush() tags.save() except Exception as e: print("ERROR: %s: %s" % (str(e), tags.file)) print(sys.exc_info()[0]) sys.stdout.write("\r\x1B[K[%d/%d] DONE \n" % (len(music), len(music))) subparser.set_defaults(func=main, command='tag') if __name__ == "__main__": main(parser.parse_args())
from tempfile import TemporaryDirectory temp_dir = TemporaryDirectory('tumblr_crawler_cli') except (ImportError, ImportError): temp_dir = '.tumblr_crawler_cli' os.mkdir(temp_dir) if not os.path.exists(temp_dir) else None from args import parser from utils import safe_format, clean_fn # endregion queue_sites = Queue() # 待解析站点队列 queue_down = Queue() # 下载任务队列 down_stop = False # 下载停止信号 cli_args = parser.parse_args() # 命令行参数 # 默认全部下载 if not cli_args.down_photo and not cli_args.down_video: cli_args.down_photo = cli_args.down_video = True # 创建http request session并设置代理 session = requests.session() if cli_args.proxy: session.proxies = {'http': cli_args.proxy, 'https': cli_args.proxy} # 初始化待解析站点队列 for _site in cli_args.sites: queue_sites.put(_site) # 当post信息非标准格式时解析图片的正则 photo_regex = re.compile(r'https://\d+.media.tumblr.com/\w{32}/tumblr_[\w.]+')
from torchvision import models from torch.nn import functional as F import numpy as np import cv2 from args import parser from utils import open_and_preprocess, classes options = parser.parse_args() def resnet152_cam(feature_conv, weight_softmax, class_idx): size_upsample = (256, 256) bz, nc, h, w = feature_conv.shape output_cam = [] for idx in class_idx: cam = weight_softmax[class_idx].dot(feature_conv.reshape((nc, h * w))) cam = cam.reshape(h, w) cam = cam - np.min(cam) cam_img = cam / np.max(cam) cam_img = np.uint8(255 * cam_img) output_cam.append(cv2.resize(cam_img, size_upsample)) return output_cam def hook_feature(module, input, output): features_blobs.append(output.data.cpu().numpy()) model = models.resnet152(pretrained=True) final_layer = 'layer4'
import matplotlib matplotlib.use("Agg") import util.vutils as vutils from tensorboardX import SummaryWriter from args import parser from data.data_loader import CustomDatasetDataLoader, InfiniteDataLoader from models.baseline import Baseline from models.semantic_reconstruct import SemanticReconstruct from models.semantic_consistency import SemanticConsistency from models.semantic_self_consist import SemanticSelfSupConsistency ######################################################################### # options opt = parser.parse_args() # output directories opt.out_dir = os.path.join( opt.out_dir, opt.dataset, opt.name, 'suprate%.3f_droprate%.2f_seed%d' % (opt.sup_portion, opt.x_drop, opt.seed)) os.makedirs(opt.out_dir, exist_ok=True) # data_loaders val_loader = CustomDatasetDataLoader(opt, istrain=False) train_loader = CustomDatasetDataLoader(opt, istrain=True, suponly=False) opt = train_loader.update_opt(opt) ## wrap with infinite loader #train_loader = InfiniteDataLoader(train_loader)