t1 = timeit.default_timer() r = func(*args, **keyArgs) t2 = timeit.default_timer() times.append(t2-t1) print (min(times)) return r return st_func p = args.size[0] n = args.size[1] X = rand(p,n) Xp = rand(p,n) y = rand(p,n) regr = linear_model.Ridge() @st_time def test_fit(X,y): regr.fit(X,y) @st_time def test_predict(X): regr.predict(X) print (','.join([args.batchID, args.arch, args.prefix, "Ridge.fit", coreString(args.num_threads), "Double", "%sx%s" % (p,n)]), end=',') test_fit(X, y) print (','.join([args.batchID, args.arch, args.prefix, "Ridge.prediction", coreString(args.num_threads), "Double", "%sx%s" % (p,n)]), end=',') test_predict(Xp)
@st_time def test_transform(Xp, pca_result, eigenvalues, eigenvectors): return pca_transform_daal(pca_result, Xp, n_components, X.shape[0], eigenvalues, eigenvectors, whiten=args.whiten) print(','.join([ args.batchID, args.arch, args.prefix, "PCA.fit", coreString(args.num_threads), "Double", "%sx%s" % (p, n) ]), end=',') res = test_fit(X) print(','.join([ args.batchID, args.arch, args.prefix, "PCA.transform", coreString(args.num_threads), "Double", "%sx%s" % (p, n) ]), end=',') tr = test_transform(Xp, res[0], res[1], res[2]) if args.write_results: np.save('pca_daal4py_X.npy', X) np.save('pca_daal4py_Xp.npy', Xp)