def main(): args = get_macro_args() if args.recommended_arch: filename = args.recommended_arch ctx = get_extension_context(args.context, device_id=args.device_id, type_config=args.type_config) nn.set_default_context(ctx) ext = nn.ext_utils.import_extension_module(args.context) data_iterator = data_iterator_cifar10 tdata = data_iterator(args.batch_size, True) vdata = data_iterator(args.batch_size, False) mean_val_train, std_val_train, channel, img_height, img_width, num_class = get_data_stats( tdata) mean_val_valid, std_val_valid, _, _, _, _ = get_data_stats(vdata) data_dict = { "train_data": (tdata, mean_val_train, std_val_train), "valid_data": (vdata, mean_val_valid, std_val_valid), "basic_info": (channel, img_height, img_width, num_class) } check_arch = np.load(filename, allow_pickle=True) print("Train the model whose architecture is:") show_arch(check_arch) val_acc = CNN_run(args, check_arch.tolist(), data_dict, with_train=True, after_search=True)
def main(): """ Start architecture search and save the architecture found by the controller during the search. """ args = get_macro_args() arguments_assertion(args) ctx = get_extension_context(args.context, device_id=args.device_id, type_config=args.type_config) nn.set_default_context(ctx) ext = nn.ext_utils.import_extension_module(args.context) if args.sampling_only: sample_from_pretrained_controller(args) return data_iterator = data_iterator_cifar10 tdata = data_iterator(args.batch_size, True) vdata = data_iterator(args.batch_size, False) mean_val_train, std_val_train, channel, img_height, img_width, num_class = get_data_stats( tdata) mean_val_valid, std_val_valid, _, _, _, _ = get_data_stats(vdata) data_dict = { "train_data": (tdata, mean_val_train, std_val_train), "valid_data": (vdata, mean_val_valid, std_val_valid), "basic_info": (channel, img_height, img_width, num_class) } initializer = I.UniformInitializer((-0.1, 0.1)) # Prepare all the weights in advance controller_weights_and_shape = { 'controller_lstm/0/lstm/affine/W': (2 * args.lstm_size, 4, args.lstm_size), 'controller_lstm/0/lstm/affine/b': (4, args.lstm_size), 'controller_lstm/1/lstm/affine/W': (2 * args.lstm_size, 4, args.lstm_size), 'controller_lstm/1/lstm/affine/b': (4, args.lstm_size), 'ops/affine/W': (args.lstm_size, args.num_ops), 'skip_affine_1/affine/W': (args.lstm_size, args.lstm_size), 'skip_affine_2/affine/W': (args.lstm_size, 1), 'skip_affine_3/affine/W': (args.lstm_size, args.lstm_size) } for w_name, w_shape in controller_weights_and_shape.items(): nn.parameter.get_parameter_or_create(w_name, w_shape, initializer=initializer, need_grad=True) # create dictionary of controller's weights controller_weights_dict = { w_name: nn.get_parameters()[w_name] for w_name in controller_weights_and_shape.keys() } arch_change, best_arch = search_architecture(args, data_dict, controller_weights_dict) if args.select_strategy == "best": print( "saving the model which achieved the best validation accuracy as {}." .format(args.recommended_arch)) check_arch = best_arch else: # Use the latest architecture. it's not necessarily the one with the best architecture. print("saving the latest model recommended by the controller as {}.". format(args.recommended_arch)) check_arch = arch_change[-1] np.save(args.recommended_arch, np.array(check_arch)) print("The saved architecture is;") show_arch(check_arch) print("when you want to train the network from scratch,\n\ type 'python macro_retrain.py <OPTION> --recommended-arch {}'".format( args.recommended_arch)) # save the controller's weights so that another architectures can be made. all_params = nn.get_parameters(grad_only=False) controller_weights = list(controller_weights_and_shape.keys()) + ["w_emb"] for param_name in all_params.keys(): if param_name not in controller_weights: nn.parameter.pop_parameter(param_name) nn.save_parameters( os.path.join(args.model_save_path, 'controller_params.h5')) # If you want to train the model recommended by the controller from scratch # right after architecture search, uncomment the lines below # nn.clear_parameters() # ext.clear_memory_cache() # clear all the Variables # val_acc = CNN_run(args, check_arch, data_dict, with_train=True, after_search=True) return