def main(): """Main entry point for running sg-prototype.""" mod = ArgSchemaParser(schema_type=InputParameters, output_schema_type=OutputParameters) output = {} # YOUR STUFF GOES HERE output.update({"input_parameters": mod.args}) if "output_json" in mod.args: mod.output(output) else: print(mod.get_output_json(output))
def main(): """Main entry point for running AllenSDK Eye Tracking.""" try: mod = ArgSchemaParser(schema_type=InputParameters, output_schema_type=OutputParameters) istream = CvInputStream(mod.args["input_source"]) ostream = setup_annotation( istream.frame_shape, **mod.args.get("annotation", DEFAULT_ANNOTATION)) qc_params = mod.args.get("qc", {}) generate_plots = qc_params.get("generate_plots", EyeTracker.DEFAULT_GENERATE_QC_OUTPUT) tracker = EyeTracker(istream, ostream, mod.args.get("starburst", {}), mod.args.get("ransac", {}), mod.args["pupil_bounding_box"], mod.args["cr_bounding_box"], generate_plots, **mod.args.get("eye_params", {})) cr_params, pupil_params, cr_err, pupil_err = tracker.process_stream( start=mod.args.get("start_frame", 0), stop=mod.args.get("stop_frame", None), step=mod.args.get("frame_step", 1)) output = write_output(mod.args["output_dir"], cr_params, pupil_params, tracker.mean_frame) pupil_intensity = None if tracker.adaptive_pupil: pupil_intensity = tracker.pupil_colors if generate_plots: write_QC_output(tracker.annotator, cr_params, pupil_params, cr_err, pupil_err, tracker.mean_frame, pupil_intensity=pupil_intensity, **mod.args) output["input_parameters"] = mod.args if "output_json" in mod.args: mod.output(output, indent=1) else: print(json.dumps(mod.get_output_json(output), indent=1)) except marshmallow.ValidationError as e: print(e) argparser = schema_argparser(InputParameters()) argparser.print_usage()
def main(): from ._schemas import InputParameters, OutputParameters mod = ArgSchemaParser(schema_type=InputParameters, output_schema_type=OutputParameters) output = calculate_quality_metrics(mod.args) output.update({"input_parameters": mod.args}) if "output_json" in mod.args: mod.output(output, indent=2) else: print(mod.get_output_json(output))
def main(): from ._schemas import InputParameters, OutputParameters mod = ArgSchemaParser(schema_type=InputParameters, output_schema_type=OutputParameters) output = classify_noise_templates(mod.args) output.update({"input_parameters": mod.args}) if "output_json" in mod.args: mod.output(output, indent=2) else: print(mod.get_output_json(output))
def main(): from ._schemas import InputParameters, OutputParameters mod = ArgSchemaParser(schema_type=InputParameters, output_schema_type=OutputParameters) # output = calculate_stimulus_metrics_ondisk(mod.args) output = calculate_stimulus_metrics_gather(mod.args) if MPI_rank == 0: output.update({"input_parameters": mod.args}) if "output_json" in mod.args: mod.output(output, indent=2) else: log_info(mod.get_output_json(output)) barrier()
def main(): from ._schemas import InputParameters, OutputParameters """Main entry point:""" mod = ArgSchemaParser(schema_type=InputParameters, output_schema_type=OutputParameters) output = get_psth_events(mod.args) output.update({"input_parameters": mod.args}) if "output_json" in mod.args: mod.output(output, indent=2) else: print(mod.get_output_json(output))
def main(): from ._schemas import InputParameters, OutputParameters mod = ArgSchemaParser(schema_type=InputParameters, output_schema_type=OutputParameters) output = run_automerging(mod.args) output.update({"input_parameters": mod.args}) if "output_json" in mod.args: mod.output(output, indent=2) else: print(mod.get_output_json(output))
def main(): from ._schemas import InputParameters, OutputParameters """Main entry point:""" mod = ArgSchemaParser(schema_type=InputParameters, output_schema_type=OutputParameters) if mod.args['tPrime_helper_params']['tPrime_3A']: output = call_TPrime_3A(mod.args) else: output = call_TPrime(mod.args) output.update({"input_parameters": mod.args}) if "output_json" in mod.args: mod.output(output, indent=2) else: print(mod.get_output_json(output))
def main(): """Main entry point for running AllenSDK Eye Tracking.""" try: mod = ArgSchemaParser(schema_type=InputParameters, output_schema_type=OutputParameters) starburst_args = get_starburst_args(mod.args["starburst"]) istream = CvInputStream(mod.args["input_source"]) im_shape = istream.frame_shape ostream = setup_annotation(im_shape, **mod.args["annotation"]) tracker = EyeTracker(im_shape, istream, ostream, starburst_args, mod.args["ransac"], mod.args["pupil_bounding_box"], mod.args["cr_bounding_box"], mod.args["qc"]["generate_plots"], **mod.args["eye_params"]) pupil_parameters, cr_parameters = tracker.process_stream( start=mod.args.get("start_frame", 0), stop=mod.args.get("stop_frame", None), step=mod.args.get("frame_step", 1)) output = write_output(mod.args["output_dir"], cr_parameters, pupil_parameters, tracker.mean_frame) if mod.args["qc"]["generate_plots"]: write_QC_output(tracker.annotator, cr_parameters, pupil_parameters, tracker.mean_frame, **mod.args) output["input_parameters"] = mod.args if "output_json" in mod.args: mod.output(output, indent=1) else: print(json.dumps(mod.get_output_json(output), indent=1)) except marshmallow.ValidationError as e: print(e) argparser = schema_argparser(InputParameters()) argparser.print_usage()