def test_7_keras_iris_unbounded(self): classifier = get_tabular_classifier_kr() # Recreate a classifier without clip values classifier = KerasClassifier(model=classifier._model, use_logits=False, channels_first=True) attack_params = { "max_iter": 1, "attacker": "newtonfool", "attacker_params": { "max_iter": 5, "verbose": False } } attack = UniversalPerturbation(classifier, verbose=False) attack.set_params(**attack_params) x_test_iris_adv = attack.generate(self.x_test_iris) self.assertFalse((self.x_test_iris == x_test_iris_adv).all()) preds_adv = np.argmax(classifier.predict(x_test_iris_adv), axis=1) self.assertFalse((np.argmax(self.y_test_iris, axis=1) == preds_adv).all()) acc = np.sum(preds_adv == np.argmax( self.y_test_iris, axis=1)) / self.y_test_iris.shape[0] logger.info( "Accuracy on Iris with universal adversarial examples: %.2f%%", (acc * 100))
def test_4_pytorch_iris(self): classifier = get_tabular_classifier_pt() attack_params = { "max_iter": 1, "attacker": "ead", "attacker_params": { "max_iter": 5, "targeted": False, "verbose": False }, } attack = UniversalPerturbation(classifier, verbose=False) attack.set_params(**attack_params) x_test_iris_adv = attack.generate(self.x_test_iris) self.assertFalse((self.x_test_iris == x_test_iris_adv).all()) self.assertTrue((x_test_iris_adv <= 1).all()) self.assertTrue((x_test_iris_adv >= 0).all()) preds_adv = np.argmax(classifier.predict(x_test_iris_adv), axis=1) self.assertFalse((np.argmax(self.y_test_iris, axis=1) == preds_adv).all()) acc = np.sum(preds_adv == np.argmax( self.y_test_iris, axis=1)) / self.y_test_iris.shape[0] logger.info( "Accuracy on Iris with universal adversarial examples: %.2f%%", (acc * 100))
def test_6_keras_iris_clipped(self): classifier = get_tabular_classifier_kr() # Test untargeted attack attack_params = { "max_iter": 1, "attacker": "newtonfool", "attacker_params": { "max_iter": 5 } } attack = UniversalPerturbation(classifier) attack.set_params(**attack_params) x_test_iris_adv = attack.generate(self.x_test_iris) self.assertFalse((self.x_test_iris == x_test_iris_adv).all()) self.assertTrue((x_test_iris_adv <= 1).all()) self.assertTrue((x_test_iris_adv >= 0).all()) preds_adv = np.argmax(classifier.predict(x_test_iris_adv), axis=1) self.assertFalse((np.argmax(self.y_test_iris, axis=1) == preds_adv).all()) acc = np.sum(preds_adv == np.argmax( self.y_test_iris, axis=1)) / self.y_test_iris.shape[0] logger.info( "Accuracy on Iris with universal adversarial examples: %.2f%%", (acc * 100))