def test_one_channel(self): mnist = input_data.read_data_sets("tmp/MNIST_data/") x = np.reshape(mnist.test.images[0:2], (-1, 28, 28, 1)) preprocess = JpegCompression() compressed_x = preprocess(x, quality=70) self.assertTrue((compressed_x.shape == x.shape)) self.assertTrue((compressed_x <= 1.0).all()) self.assertTrue((compressed_x >= 0.0).all())
def test_one_channel(self): (x_train, _), (_, _), _, _ = load_mnist() x_train = x_train[:2] preprocess = JpegCompression() compressed_x, _ = preprocess(x_train, quality=70) self.assertTrue((compressed_x.shape == x_train.shape)) self.assertTrue((compressed_x <= 1.0).all()) self.assertTrue((compressed_x >= 0.0).all())
def test_three_channels(self): (train_features, _), (_, _) = cifar10.load_data() x = train_features[:2] / 255.0 preprocess = JpegCompression() compressed_x = preprocess(x, quality=80) self.assertTrue((compressed_x.shape == x.shape)) self.assertTrue((compressed_x <= 1.0).all()) self.assertTrue((compressed_x >= 0.0).all())
def test_channel_index(self): (train_features, _), (_, _) = cifar10.load_data() x = train_features[:2] / 255.0 x = np.swapaxes(x, 1, 3) preprocess = JpegCompression(channel_index=1) compressed_x = preprocess(x, quality=80) self.assertTrue((compressed_x.shape == x.shape)) self.assertTrue((compressed_x <= 1.0).all()) self.assertTrue((compressed_x >= 0.0).all())
def test_failure_feature_vectors(self): x = np.random.rand(10, 3) preprocess = JpegCompression(channel_index=1, quality=80) # Assert that value error is raised for feature vectors with self.assertRaises(ValueError) as context: preprocess(x) self.assertTrue('Feature vectors detected.' in str(context.exception))