def predict(predictor, examples, param): """ make prediction on examples using trained predictor @param predictor: trained predictor @type predictor: SVM object @param examples: list of examples @type examples: list """ #shogun data feat = create_hashed_features_wdk(param.flags, examples) #predict svm_out = predictor.classify(feat).get_labels() return svm_out
def train_splice_predictor(examples, labels, param): """ @param examples: list of strings @param labels: list of integers {-1,1} """ ########################## # build classifier ########################## feat_train = create_hashed_features_wdk(param.flags, examples) lab = create_labels(labels) svm = create_svm(param, feat_train, lab) svm.train() return svm
def init_predictor(examples, labels, param, w): """ @param examples: list of strings @param labels: list of integers {-1,1} @param w: weight vector of trained svm """ ########################## # build classifier ########################## feat_train = create_hashed_features_wdk(param.flags, examples) lab = create_labels(labels) svm = create_svm(param, feat_train, lab) svm.set_w(w) return svm