def test_database_logic(seed, testdir): from ase.ga.data import PrepareDB from ase.ga.data import DataConnection from ase.ga.startgenerator import StartGenerator from ase.ga.utilities import closest_distances_generator from ase.ga import set_raw_score import numpy as np from ase.build import fcc111 from ase.constraints import FixAtoms # set up the random number generator rng = np.random.RandomState(seed) slab = fcc111('Au', size=(4, 4, 2), vacuum=10.0, orthogonal=True) slab.set_constraint(FixAtoms(mask=slab.positions[:, 2] <= 10.)) # define the volume in which the adsorbed cluster is optimized # the volume is defined by a corner position (p0) # and three spanning vectors (v1, v2, v3) pos = slab.get_positions() cell = slab.get_cell() p0 = np.array([0., 0., max(pos[:, 2]) + 2.]) v1 = cell[0, :] * 0.8 v2 = cell[1, :] * 0.8 v3 = cell[2, :] v3[2] = 3. # define the closest distance between two atoms of a given species blmin = closest_distances_generator(atom_numbers=[47, 79], ratio_of_covalent_radii=0.7) # Define the composition of the atoms to optimize atom_numbers = 2 * [47] + 2 * [79] # create the starting population sg = StartGenerator(slab=slab, blocks=atom_numbers, blmin=blmin, box_to_place_in=[p0, [v1, v2, v3]], rng=rng) # generate the starting population starting_population = [sg.get_new_candidate() for i in range(20)] d = PrepareDB(db_file_name=db_file, simulation_cell=slab, stoichiometry=atom_numbers) for a in starting_population: d.add_unrelaxed_candidate(a) # and now for the actual test dc = DataConnection(db_file) dc.get_slab() dc.get_atom_numbers_to_optimize() assert dc.get_number_of_unrelaxed_candidates() == 20 a1 = dc.get_an_unrelaxed_candidate() dc.mark_as_queued(a1) assert dc.get_number_of_unrelaxed_candidates() == 19 assert len(dc.get_all_candidates_in_queue()) == 1 set_raw_score(a1, 0.0) dc.add_relaxed_step(a1) assert dc.get_number_of_unrelaxed_candidates() == 19 assert len(dc.get_all_candidates_in_queue()) == 0 assert len(dc.get_all_relaxed_candidates()) == 1 a2 = dc.get_an_unrelaxed_candidate() dc.mark_as_queued(a2) confid = a2.info['confid'] assert dc.get_all_candidates_in_queue()[0] == confid dc.remove_from_queue(confid) assert len(dc.get_all_candidates_in_queue()) == 0
dc = DataConnection(db_file) slab_get = dc.get_slab() an_get = dc.get_atom_numbers_to_optimize() assert dc.get_number_of_unrelaxed_candidates() == 20 a1 = dc.get_an_unrelaxed_candidate() dc.mark_as_queued(a1) assert dc.get_number_of_unrelaxed_candidates() == 19 assert len(dc.get_all_candidates_in_queue()) == 1 a1.set_raw_score(0.0) dc.add_relaxed_step(a1) assert dc.get_number_of_unrelaxed_candidates() == 19 assert len(dc.get_all_candidates_in_queue()) == 0 assert len(dc.get_all_relaxed_candidates()) == 1 a2 = dc.get_an_unrelaxed_candidate() dc.mark_as_queued(a2) confid = a2.info['confid'] assert dc.get_all_candidates_in_queue()[0] == confid dc.remove_from_queue(confid) assert len(dc.get_all_candidates_in_queue()) == 0 os.remove(db_file)