예제 #1
0
 def start(self, name):
     Timer.start(self, name)
     if name in self.regions:
         id = self.regions[name]
     else:
         id = self.region_id
         self.regions[name] = id
         self.region_id += 1
     self.craypat_region_begin(id, name)
예제 #2
0
파일: timing.py 프로젝트: thonmaker/gpaw
 def start(self, name):
     Timer.start(self, name)
     if name in self.regions:
         id = self.regions[name]
     else:
         id = self.region_id
         self.regions[name] = id
         self.region_id += 1
     self.craypat_region_begin(id, name)
 def test_inv_speed(self):
     full_mat = self.recover()
     timer = Timer()
     timer.start('full_numpy')
     tmp0 = np.linalg.inv(full_mat)
     timer.stop('full_numpy')
     
     timer.start('full_lapack')
     inverse_general(full_mat)
     timer.stop('full_lapack')
     
     timer.start('sparse_lapack')
     self.inv_eq()
     timer.stop('sparse_lapack')
     
     timer.start('sparse_lapack_ne')
     self.inv_ne()
     timer.stop('sparse_lapack_ne')
     
     times = []
     methods = ['full_numpy', 'full_lapack', 'sparse_lapack']
     for name in methods:
         time = timer.timers[name,]
         print(name, time)
         times.append(time)
     
     mintime = np.min(times)
     self.inv_method = methods[np.argmin(times)]
     print('mintime', mintime)
     
     print('sparse_lapack_ne', timer.timers['sparse_lapack_ne',])
예제 #4
0
 def start(self, name):
     Timer.start(self, name)
     self.tau_timers[name] = self.pytau.profileTimer(name)
     self.pytau.start(self.tau_timers[name])
예제 #5
0
class GPAW(Calculator, PAW):
    """This is the ASE-calculator frontend for doing a PAW calculation."""

    implemented_properties = [
        'energy', 'forces', 'stress', 'dipole', 'magmom', 'magmoms'
    ]

    default_parameters = {
        'mode': 'fd',
        'xc': 'LDA',
        'occupations': None,
        'poissonsolver': None,
        'h': None,  # Angstrom
        'gpts': None,
        'kpts': [(0.0, 0.0, 0.0)],
        'nbands': None,
        'charge': 0,
        'setups': {},
        'basis': {},
        'spinpol': None,
        'fixdensity': False,
        'filter': None,
        'mixer': None,
        'eigensolver': None,
        'background_charge': None,
        'external': None,
        'random': False,
        'hund': False,
        'maxiter': 333,
        'idiotproof': True,
        'symmetry': {
            'point_group': True,
            'time_reversal': True,
            'symmorphic': True,
            'tolerance': 1e-7
        },
        'convergence': {
            'energy': 0.0005,  # eV / electron
            'density': 1.0e-4,
            'eigenstates': 4.0e-8,  # eV^2
            'bands': 'occupied',
            'forces': np.inf
        },  # eV / Ang
        'dtype': None,  # Deprecated
        'width': None,  # Deprecated
        'verbose': 0
    }

    default_parallel = {
        'kpt': None,
        'domain': gpaw.parsize_domain,
        'band': gpaw.parsize_bands,
        'order': 'kdb',
        'stridebands': False,
        'augment_grids': gpaw.augment_grids,
        'sl_auto': False,
        'sl_default': gpaw.sl_default,
        'sl_diagonalize': gpaw.sl_diagonalize,
        'sl_inverse_cholesky': gpaw.sl_inverse_cholesky,
        'sl_lcao': gpaw.sl_lcao,
        'sl_lrtddft': gpaw.sl_lrtddft,
        'buffer_size': gpaw.buffer_size
    }

    def __init__(self,
                 restart=None,
                 ignore_bad_restart_file=False,
                 label=None,
                 atoms=None,
                 timer=None,
                 communicator=None,
                 txt='-',
                 parallel=None,
                 **kwargs):

        self.parallel = dict(self.default_parallel)
        if parallel:
            self.parallel.update(parallel)

        if timer is None:
            self.timer = Timer()
        else:
            self.timer = timer

        self.scf = None
        self.wfs = None
        self.occupations = None
        self.density = None
        self.hamiltonian = None

        self.observers = []  # XXX move to self.scf
        self.initialized = False

        self.world = communicator
        if self.world is None:
            self.world = mpi.world
        elif not hasattr(self.world, 'new_communicator'):
            self.world = mpi.world.new_communicator(np.asarray(self.world))

        self.log = GPAWLogger(world=self.world)
        self.log.fd = txt

        self.reader = None

        Calculator.__init__(self, restart, ignore_bad_restart_file, label,
                            atoms, **kwargs)

    def __del__(self):
        self.timer.write(self.log.fd)
        if self.reader is not None:
            self.reader.close()

    def write(self, filename, mode=''):
        self.log('Writing to {0} (mode={1!r})\n'.format(filename, mode))
        writer = Writer(filename, self.world)
        self._write(writer, mode)
        writer.close()
        self.world.barrier()

    def _write(self, writer, mode):
        from ase.io.trajectory import write_atoms
        writer.write(version=1,
                     gpaw_version=gpaw.__version__,
                     ha=Ha,
                     bohr=Bohr)

        write_atoms(writer.child('atoms'), self.atoms)
        writer.child('results').write(**self.results)
        writer.child('parameters').write(**self.todict())

        self.density.write(writer.child('density'))
        self.hamiltonian.write(writer.child('hamiltonian'))
        self.occupations.write(writer.child('occupations'))
        self.scf.write(writer.child('scf'))
        self.wfs.write(writer.child('wave_functions'), mode == 'all')

        return writer

    def read(self, filename):
        from ase.io.trajectory import read_atoms
        self.log('Reading from {0}'.format(filename))

        self.reader = reader = Reader(filename)

        self.atoms = read_atoms(reader.atoms)

        res = reader.results
        self.results = dict((key, res.get(key)) for key in res.keys())
        if self.results:
            self.log('Read {0}'.format(', '.join(sorted(self.results))))

        self.log('Reading input parameters:')
        self.parameters = self.get_default_parameters()
        dct = {}
        for key, value in reader.parameters.asdict().items():
            if (isinstance(value, dict)
                    and isinstance(self.parameters[key], dict)):
                self.parameters[key].update(value)
            else:
                self.parameters[key] = value
            dct[key] = self.parameters[key]

        self.log.print_dict(dct)
        self.log()

        self.initialize(reading=True)

        self.density.read(reader)
        self.hamiltonian.read(reader)
        self.occupations.read(reader)
        self.scf.read(reader)
        self.wfs.read(reader)

        # We need to do this in a better way:  XXX
        from gpaw.utilities.partition import AtomPartition
        atom_partition = AtomPartition(self.wfs.gd.comm,
                                       np.zeros(len(self.atoms), dtype=int))
        self.wfs.atom_partition = atom_partition
        self.density.atom_partition = atom_partition
        self.hamiltonian.atom_partition = atom_partition
        spos_ac = self.atoms.get_scaled_positions() % 1.0
        rank_a = self.density.gd.get_ranks_from_positions(spos_ac)
        new_atom_partition = AtomPartition(self.density.gd.comm, rank_a)
        for obj in [self.density, self.hamiltonian]:
            obj.set_positions_without_ruining_everything(
                spos_ac, new_atom_partition)

        self.hamiltonian.xc.read(reader)

        if self.hamiltonian.xc.name == 'GLLBSC':
            # XXX GLLB: See lcao/tdgllbsc.py test
            self.occupations.calculate(self.wfs)

        return reader

    def check_state(self, atoms, tol=1e-15):
        system_changes = Calculator.check_state(self, atoms, tol)
        if 'positions' not in system_changes:
            if self.hamiltonian:
                if self.hamiltonian.vext:
                    if self.hamiltonian.vext.vext_g is None:
                        # QMMM atoms have moved:
                        system_changes.append('positions')
        return system_changes

    def calculate(self,
                  atoms=None,
                  properties=['energy'],
                  system_changes=['cell']):
        """Calculate things."""

        Calculator.calculate(self, atoms)
        atoms = self.atoms

        if system_changes:
            self.log('System changes:', ', '.join(system_changes), '\n')
            if system_changes == ['positions']:
                # Only positions have changed:
                self.density.reset()
            else:
                # Drastic changes:
                self.wfs = None
                self.occupations = None
                self.density = None
                self.hamiltonian = None
                self.scf = None
                self.initialize(atoms)

            self.set_positions(atoms)

        if not self.initialized:
            self.initialize(atoms)
            self.set_positions(atoms)

        if not (self.wfs.positions_set and self.hamiltonian.positions_set):
            self.set_positions(atoms)

        if not self.scf.converged:
            print_cell(self.wfs.gd, self.atoms.pbc, self.log)

            with self.timer('SCF-cycle'):
                self.scf.run(self.wfs, self.hamiltonian, self.density,
                             self.occupations, self.log, self.call_observers)

            self.log('\nConverged after {0} iterations.\n'.format(
                self.scf.niter))

            e_free = self.hamiltonian.e_total_free
            e_extrapolated = self.hamiltonian.e_total_extrapolated
            self.results['energy'] = e_extrapolated * Ha
            self.results['free_energy'] = e_free * Ha

            if not self.atoms.pbc.all():
                dipole_v = self.density.calculate_dipole_moment() * Bohr
                self.log(
                    'Dipole moment: ({0:.6f}, {1:.6f}, {2:.6f}) |e|*Ang\n'.
                    format(*dipole_v))
                self.results['dipole'] = dipole_v

            if self.wfs.nspins == 2:
                magmom = self.occupations.magmom
                magmom_a = self.density.estimate_magnetic_moments(total=magmom)
                self.log('Total magnetic moment: %f' % magmom)
                self.log('Local magnetic moments:')
                symbols = self.atoms.get_chemical_symbols()
                for a, mom in enumerate(magmom_a):
                    self.log('{0:4} {1:2} {2:.6f}'.format(a, symbols[a], mom))
                self.log()
                self.results['magmom'] = self.occupations.magmom
                self.results['magmoms'] = magmom_a

            self.summary()

            self.call_observers(self.scf.niter, final=True)

        if 'forces' in properties:
            with self.timer('Forces'):
                F_av = calculate_forces(self.wfs, self.density,
                                        self.hamiltonian, self.log)
                self.results['forces'] = F_av * (Ha / Bohr)

        if 'stress' in properties:
            with self.timer('Stress'):
                try:
                    stress = calculate_stress(self).flat[[0, 4, 8, 5, 2, 1]]
                except NotImplementedError:
                    # Our ASE Calculator base class will raise
                    # PropertyNotImplementedError for us.
                    pass
                else:
                    self.results['stress'] = stress * (Ha / Bohr**3)

    def summary(self):
        self.hamiltonian.summary(self.occupations.fermilevel, self.log)
        self.density.summary(self.atoms, self.occupations.magmom, self.log)
        self.occupations.summary(self.log)
        self.wfs.summary(self.log)
        self.log.fd.flush()

    def set(self, **kwargs):
        """Change parameters for calculator.

        Examples::

            calc.set(xc='PBE')
            calc.set(nbands=20, kpts=(4, 1, 1))
        """

        changed_parameters = Calculator.set(self, **kwargs)

        for key in ['setups', 'basis']:
            if key in changed_parameters:
                dct = changed_parameters[key]
                if isinstance(dct, dict) and None in dct:
                    dct['default'] = dct.pop(None)
                    warnings.warn('Please use {key}={dct}'.format(key=key,
                                                                  dct=dct))

        # We need to handle txt early in order to get logging up and running:
        if 'txt' in changed_parameters:
            self.log.fd = changed_parameters.pop('txt')

        if not changed_parameters:
            return {}

        self.initialized = False
        self.scf = None
        self.results = {}

        self.log('Input parameters:')
        self.log.print_dict(changed_parameters)
        self.log()

        for key in changed_parameters:
            if key in ['eigensolver', 'convergence'] and self.wfs:
                self.wfs.set_eigensolver(None)

            if key in [
                    'mixer', 'verbose', 'txt', 'hund', 'random', 'eigensolver',
                    'idiotproof'
            ]:
                continue

            if key in ['convergence', 'fixdensity', 'maxiter']:
                continue

            # More drastic changes:
            if self.wfs:
                self.wfs.set_orthonormalized(False)
            if key in ['external', 'xc', 'poissonsolver']:
                self.hamiltonian = None
            elif key in ['occupations', 'width']:
                pass
            elif key in ['charge', 'background_charge']:
                self.hamiltonian = None
                self.density = None
                self.wfs = None
            elif key in ['kpts', 'nbands', 'symmetry']:
                self.wfs = None
            elif key in ['h', 'gpts', 'setups', 'spinpol', 'dtype', 'mode']:
                self.density = None
                self.hamiltonian = None
                self.wfs = None
            elif key in ['basis']:
                self.wfs = None
            else:
                raise TypeError('Unknown keyword argument: "%s"' % key)

    def initialize_positions(self, atoms=None):
        """Update the positions of the atoms."""
        self.log('Initializing position-dependent things.\n')
        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        mpi.synchronize_atoms(atoms, self.world)

        spos_ac = atoms.get_scaled_positions() % 1.0

        rank_a = self.wfs.gd.get_ranks_from_positions(spos_ac)
        atom_partition = AtomPartition(self.wfs.gd.comm, rank_a, name='gd')
        self.wfs.set_positions(spos_ac, atom_partition)
        self.density.set_positions(spos_ac, atom_partition)
        self.hamiltonian.set_positions(spos_ac, atom_partition)

        return spos_ac

    def set_positions(self, atoms=None):
        """Update the positions of the atoms and initialize wave functions."""
        spos_ac = self.initialize_positions(atoms)

        nlcao, nrand = self.wfs.initialize(self.density, self.hamiltonian,
                                           spos_ac)
        if nlcao + nrand:
            self.log('Creating initial wave functions:')
            if nlcao:
                self.log(' ', plural(nlcao, 'band'), 'from LCAO basis set')
            if nrand:
                self.log(' ', plural(nrand, 'band'), 'from random numbers')
            self.log()

        self.wfs.eigensolver.reset()
        self.scf.reset()
        print_positions(self.atoms, self.log)

    def initialize(self, atoms=None, reading=False):
        """Inexpensive initialization."""

        self.log('Initialize ...\n')

        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        par = self.parameters

        natoms = len(atoms)

        cell_cv = atoms.get_cell() / Bohr
        number_of_lattice_vectors = cell_cv.any(axis=1).sum()
        if number_of_lattice_vectors < 3:
            raise ValueError(
                'GPAW requires 3 lattice vectors.  Your system has {0}.'.
                format(number_of_lattice_vectors))

        pbc_c = atoms.get_pbc()
        assert len(pbc_c) == 3
        magmom_a = atoms.get_initial_magnetic_moments()

        mpi.synchronize_atoms(atoms, self.world)

        # Generate new xc functional only when it is reset by set
        # XXX sounds like this should use the _changed_keywords dictionary.
        if self.hamiltonian is None or self.hamiltonian.xc is None:
            if isinstance(par.xc, basestring):
                xc = XC(par.xc)
            else:
                xc = par.xc
        else:
            xc = self.hamiltonian.xc

        mode = par.mode
        if isinstance(mode, basestring):
            mode = {'name': mode}
        if isinstance(mode, dict):
            mode = create_wave_function_mode(**mode)

        if par.dtype == complex:
            warnings.warn('Use mode={0}(..., force_complex_dtype=True) '
                          'instead of dtype=complex'.format(mode.name.upper()))
            mode.force_complex_dtype = True
            del par['dtype']
            par.mode = mode

        if xc.orbital_dependent and mode.name == 'lcao':
            raise ValueError('LCAO mode does not support '
                             'orbital-dependent XC functionals.')

        realspace = (mode.name != 'pw' and mode.interpolation != 'fft')

        if not realspace:
            pbc_c = np.ones(3, bool)

        self.create_setups(mode, xc)

        magnetic = magmom_a.any()

        spinpol = par.spinpol
        if par.hund:
            if natoms != 1:
                raise ValueError('hund=True arg only valid for single atoms!')
            spinpol = True
            magmom_a[0] = self.setups[0].get_hunds_rule_moment(par.charge)

        if spinpol is None:
            spinpol = magnetic
        elif magnetic and not spinpol:
            raise ValueError('Non-zero initial magnetic moment for a ' +
                             'spin-paired calculation!')

        nspins = 1 + int(spinpol)

        if spinpol:
            self.log('Spin-polarized calculation.')
            self.log('Magnetic moment:  {0:.6f}\n'.format(magmom_a.sum()))
        else:
            self.log('Spin-paired calculation\n')

        if isinstance(par.background_charge, dict):
            background = create_background_charge(**par.background_charge)
        else:
            background = par.background_charge

        nao = self.setups.nao
        nvalence = self.setups.nvalence - par.charge
        if par.background_charge is not None:
            nvalence += background.charge
        M = abs(magmom_a.sum())

        nbands = par.nbands

        orbital_free = any(setup.orbital_free for setup in self.setups)
        if orbital_free:
            nbands = 1

        if isinstance(nbands, basestring):
            if nbands[-1] == '%':
                basebands = int(nvalence + M + 0.5) // 2
                nbands = int((float(nbands[:-1]) / 100) * basebands)
            else:
                raise ValueError('Integer expected: Only use a string '
                                 'if giving a percentage of occupied bands')

        if nbands is None:
            nbands = 0
            for setup in self.setups:
                nbands_from_atom = setup.get_default_nbands()

                # Any obscure setup errors?
                if nbands_from_atom < -(-setup.Nv // 2):
                    raise ValueError('Bad setup: This setup requests %d'
                                     ' bands but has %d electrons.' %
                                     (nbands_from_atom, setup.Nv))
                nbands += nbands_from_atom
            nbands = min(nao, nbands)
        elif nbands > nao and mode.name == 'lcao':
            raise ValueError('Too many bands for LCAO calculation: '
                             '%d bands and only %d atomic orbitals!' %
                             (nbands, nao))

        if nvalence < 0:
            raise ValueError(
                'Charge %f is not possible - not enough valence electrons' %
                par.charge)

        if nbands <= 0:
            nbands = int(nvalence + M + 0.5) // 2 + (-nbands)

        if nvalence > 2 * nbands and not orbital_free:
            raise ValueError('Too few bands!  Electrons: %f, bands: %d' %
                             (nvalence, nbands))

        self.create_occupations(magmom_a.sum(), orbital_free)

        if self.scf is None:
            self.create_scf(nvalence, mode)

        self.create_symmetry(magmom_a, cell_cv)

        if not self.wfs:
            self.create_wave_functions(mode, realspace, nspins, nbands, nao,
                                       nvalence, self.setups, magmom_a,
                                       cell_cv, pbc_c)
        else:
            self.wfs.set_setups(self.setups)

        if not self.wfs.eigensolver:
            self.create_eigensolver(xc, nbands, mode)

        if self.density is None and not reading:
            assert not par.fixdensity, 'No density to fix!'

        olddens = None
        if (self.density is not None and
            (self.density.gd.parsize_c != self.wfs.gd.parsize_c).any()):
            # Domain decomposition has changed, so we need to
            # reinitialize density and hamiltonian:
            if par.fixdensity:
                olddens = self.density

            self.density = None
            self.hamiltonian = None

        if self.density is None:
            self.create_density(realspace, mode, background)

        # XXXXXXXXXX if setups change, then setups.core_charge may change.
        # But that parameter was supplied in Density constructor!
        # This surely is a bug!
        self.density.initialize(self.setups, self.timer, magmom_a, par.hund)
        self.density.set_mixer(par.mixer)
        if self.density.mixer.driver.name == 'dummy' or par.fixdensity:
            self.log('No density mixing\n')
        else:
            self.log(self.density.mixer, '\n')
        self.density.fixed = par.fixdensity
        self.density.log = self.log

        if olddens is not None:
            self.density.initialize_from_other_density(olddens,
                                                       self.wfs.kptband_comm)

        if self.hamiltonian is None:
            self.create_hamiltonian(realspace, mode, xc)

        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)

        if xc.name == 'GLLBSC' and olddens is not None:
            xc.heeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeelp(olddens)

        self.print_memory_estimate(maxdepth=memory_estimate_depth + 1)

        print_parallelization_details(self.wfs, self.density, self.log)

        self.log('Number of atoms:', natoms)
        self.log('Number of atomic orbitals:', self.wfs.setups.nao)
        if self.nbands_parallelization_adjustment != 0:
            self.log(
                'Adjusting number of bands by %+d to match parallelization' %
                self.nbands_parallelization_adjustment)
        self.log('Number of bands in calculation:', self.wfs.bd.nbands)
        self.log('Bands to converge: ', end='')
        n = par.convergence.get('bands', 'occupied')
        if n == 'occupied':
            self.log('occupied states only')
        elif n == 'all':
            self.log('all')
        else:
            self.log('%d lowest bands' % n)
        self.log('Number of valence electrons:', self.wfs.nvalence)

        self.log(flush=True)

        self.timer.print_info(self)

        if dry_run:
            self.dry_run()

        if (realspace and self.hamiltonian.poisson.get_description()
                == 'FDTD+TDDFT'):
            self.hamiltonian.poisson.set_density(self.density)
            self.hamiltonian.poisson.print_messages(self.log)
            self.log.fd.flush()

        self.initialized = True
        self.log('... initialized\n')

    def create_setups(self, mode, xc):
        if self.parameters.filter is None and mode.name != 'pw':
            gamma = 1.6
            N_c = self.parameters.get('gpts')
            if N_c is None:
                h = (self.parameters.h or 0.2) / Bohr
            else:
                icell_vc = np.linalg.inv(self.atoms.cell)
                h = ((icell_vc**2).sum(0)**-0.5 / N_c).max() / Bohr

            def filter(rgd, rcut, f_r, l=0):
                gcut = np.pi / h - 2 / rcut / gamma
                f_r[:] = rgd.filter(f_r, rcut * gamma, gcut, l)
        else:
            filter = self.parameters.filter

        Z_a = self.atoms.get_atomic_numbers()
        self.setups = Setups(Z_a, self.parameters.setups,
                             self.parameters.basis, xc, filter, self.world)
        self.log(self.setups)

    def create_grid_descriptor(self, N_c, cell_cv, pbc_c, domain_comm,
                               parsize_domain):
        return GridDescriptor(N_c, cell_cv, pbc_c, domain_comm, parsize_domain)

    def create_occupations(self, magmom, orbital_free):
        occ = self.parameters.occupations

        if occ is None:
            if orbital_free:
                occ = {'name': 'orbital-free'}
            else:
                width = self.parameters.width
                if width is not None:
                    warnings.warn(
                        'Please use occupations=FermiDirac({0})'.format(width))
                elif self.atoms.pbc.any():
                    width = 0.1  # eV
                else:
                    width = 0.0
                occ = {'name': 'fermi-dirac', 'width': width}

        if isinstance(occ, dict):
            occ = create_occupation_number_object(**occ)

        if self.parameters.fixdensity:
            occ.fixed_fermilevel = True
            if self.occupations:
                occ.fermilevel = self.occupations.fermilevel

        self.occupations = occ

        # If occupation numbers are changed, and we have wave functions,
        # recalculate the occupation numbers
        if self.wfs is not None:
            self.occupations.calculate(self.wfs)

        self.occupations.magmom = magmom

        self.log(self.occupations)

    def create_scf(self, nvalence, mode):
        if mode.name == 'lcao':
            niter_fixdensity = 0
        else:
            niter_fixdensity = 2

        nv = max(nvalence, 1)
        cc = self.parameters.convergence
        self.scf = SCFLoop(
            cc.get('eigenstates', 4.0e-8) / Ha**2 * nv,
            cc.get('energy', 0.0005) / Ha * nv,
            cc.get('density', 1.0e-4) * nv,
            cc.get('forces', np.inf) / (Ha / Bohr), self.parameters.maxiter,
            niter_fixdensity, nv)
        self.log(self.scf)

    def create_symmetry(self, magmom_a, cell_cv):
        symm = self.parameters.symmetry
        if symm == 'off':
            symm = {'point_group': False, 'time_reversal': False}
        m_a = magmom_a.round(decimals=3)  # round off
        id_a = list(zip(self.setups.id_a, m_a))
        self.symmetry = Symmetry(id_a, cell_cv, self.atoms.pbc, **symm)
        self.symmetry.analyze(self.atoms.get_scaled_positions())
        self.setups.set_symmetry(self.symmetry)

    def create_eigensolver(self, xc, nbands, mode):
        # Number of bands to converge:
        nbands_converge = self.parameters.convergence.get('bands', 'occupied')
        if nbands_converge == 'all':
            nbands_converge = nbands
        elif nbands_converge != 'occupied':
            assert isinstance(nbands_converge, int)
            if nbands_converge < 0:
                nbands_converge += nbands
        eigensolver = get_eigensolver(self.parameters.eigensolver, mode,
                                      self.parameters.convergence)
        eigensolver.nbands_converge = nbands_converge
        # XXX Eigensolver class doesn't define an nbands_converge property

        if isinstance(xc, SIC):
            eigensolver.blocksize = 1

        self.wfs.set_eigensolver(eigensolver)

        self.log(self.wfs.eigensolver, '\n')

    def create_density(self, realspace, mode, background):
        gd = self.wfs.gd

        big_gd = gd.new_descriptor(comm=self.world)
        # Check whether grid is too small.  8 is smallest admissible.
        # (we decide this by how difficult it is to make the tests pass)
        # (Actually it depends on stencils!  But let the user deal with it)
        N_c = big_gd.get_size_of_global_array(pad=True)
        too_small = np.any(N_c / big_gd.parsize_c < 8)
        if self.parallel['augment_grids'] and not too_small:
            aux_gd = big_gd
        else:
            aux_gd = gd

        redistributor = GridRedistributor(self.world, self.wfs.kptband_comm,
                                          gd, aux_gd)

        # Construct grid descriptor for fine grids for densities
        # and potentials:
        finegd = aux_gd.refine()

        kwargs = dict(gd=gd,
                      finegd=finegd,
                      nspins=self.wfs.nspins,
                      charge=self.parameters.charge +
                      self.wfs.setups.core_charge,
                      redistributor=redistributor,
                      background_charge=background)

        if realspace:
            self.density = RealSpaceDensity(stencil=mode.interpolation,
                                            **kwargs)
        else:
            self.density = pw.ReciprocalSpaceDensity(**kwargs)

        self.log(self.density, '\n')

    def create_hamiltonian(self, realspace, mode, xc):
        dens = self.density
        kwargs = dict(gd=dens.gd,
                      finegd=dens.finegd,
                      nspins=dens.nspins,
                      setups=dens.setups,
                      timer=self.timer,
                      xc=xc,
                      world=self.world,
                      redistributor=dens.redistributor,
                      vext=self.parameters.external,
                      psolver=self.parameters.poissonsolver)
        if realspace:
            self.hamiltonian = RealSpaceHamiltonian(stencil=mode.interpolation,
                                                    **kwargs)
            xc.set_grid_descriptor(self.hamiltonian.finegd)  # XXX
        else:
            self.hamiltonian = pw.ReciprocalSpaceHamiltonian(
                pd2=dens.pd2, pd3=dens.pd3, realpbc_c=self.atoms.pbc, **kwargs)
            xc.set_grid_descriptor(dens.xc_redistributor.aux_gd)  # XXX

        self.log(self.hamiltonian, '\n')

    def create_wave_functions(self, mode, realspace, nspins, nbands, nao,
                              nvalence, setups, magmom_a, cell_cv, pbc_c):
        par = self.parameters

        bzkpts_kc = kpts2ndarray(par.kpts, self.atoms)
        kd = KPointDescriptor(bzkpts_kc, nspins)

        self.timer.start('Set symmetry')
        kd.set_symmetry(self.atoms, self.symmetry, comm=self.world)
        self.timer.stop('Set symmetry')

        self.log(kd)

        parallelization = mpi.Parallelization(self.world, nspins * kd.nibzkpts)

        parsize_kpt = self.parallel['kpt']
        parsize_domain = self.parallel['domain']
        parsize_bands = self.parallel['band']

        ndomains = None
        if parsize_domain is not None:
            ndomains = np.prod(parsize_domain)
        if mode.name == 'pw':
            if ndomains is not None and ndomains > 1:
                raise ValueError('Planewave mode does not support '
                                 'domain decomposition.')
            ndomains = 1
        parallelization.set(kpt=parsize_kpt,
                            domain=ndomains,
                            band=parsize_bands)
        comms = parallelization.build_communicators()
        domain_comm = comms['d']
        kpt_comm = comms['k']
        band_comm = comms['b']
        kptband_comm = comms['D']
        domainband_comm = comms['K']

        self.comms = comms

        if par.gpts is not None:
            if par.h is not None:
                raise ValueError("""You can't use both "gpts" and "h"!""")
            N_c = np.array(par.gpts)
        else:
            h = par.h
            if h is not None:
                h /= Bohr
            N_c = get_number_of_grid_points(cell_cv, h, mode, realspace,
                                            kd.symmetry)

        self.symmetry.check_grid(N_c)

        kd.set_communicator(kpt_comm)

        parstride_bands = self.parallel['stridebands']

        # Unfortunately we need to remember that we adjusted the
        # number of bands so we can print a warning if it differs
        # from the number specified by the user.  (The number can
        # be inferred from the input parameters, but it's tricky
        # because we allow negative numbers)
        self.nbands_parallelization_adjustment = -nbands % band_comm.size
        nbands += self.nbands_parallelization_adjustment

        bd = BandDescriptor(nbands, band_comm, parstride_bands)

        # Construct grid descriptor for coarse grids for wave functions:
        gd = self.create_grid_descriptor(N_c, cell_cv, pbc_c, domain_comm,
                                         parsize_domain)

        if hasattr(self, 'time') or mode.force_complex_dtype:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        wfs_kwargs = dict(gd=gd,
                          nvalence=nvalence,
                          setups=setups,
                          bd=bd,
                          dtype=dtype,
                          world=self.world,
                          kd=kd,
                          kptband_comm=kptband_comm,
                          timer=self.timer)

        if self.parallel['sl_auto']:
            # Choose scalapack parallelization automatically

            for key, val in self.parallel.items():
                if (key.startswith('sl_') and key != 'sl_auto'
                        and val is not None):
                    raise ValueError("Cannot use 'sl_auto' together "
                                     "with '%s'" % key)
            max_scalapack_cpus = bd.comm.size * gd.comm.size
            nprow = max_scalapack_cpus
            npcol = 1

            # Get a sort of reasonable number of columns/rows
            while npcol < nprow and nprow % 2 == 0:
                npcol *= 2
                nprow //= 2
            assert npcol * nprow == max_scalapack_cpus

            # ScaLAPACK creates trouble if there aren't at least a few
            # whole blocks; choose block size so there will always be
            # several blocks.  This will crash for small test systems,
            # but so will ScaLAPACK in any case
            blocksize = min(-(-nbands // 4), 64)
            sl_default = (nprow, npcol, blocksize)
        else:
            sl_default = self.parallel['sl_default']

        if mode.name == 'lcao':
            # Layouts used for general diagonalizer
            sl_lcao = self.parallel['sl_lcao']
            if sl_lcao is None:
                sl_lcao = sl_default
            lcaoksl = get_KohnSham_layouts(sl_lcao,
                                           'lcao',
                                           gd,
                                           bd,
                                           domainband_comm,
                                           dtype,
                                           nao=nao,
                                           timer=self.timer)

            self.wfs = mode(lcaoksl, **wfs_kwargs)

        elif mode.name == 'fd' or mode.name == 'pw':
            # buffer_size keyword only relevant for fdpw
            buffer_size = self.parallel['buffer_size']
            # Layouts used for diagonalizer
            sl_diagonalize = self.parallel['sl_diagonalize']
            if sl_diagonalize is None:
                sl_diagonalize = sl_default
            diagksl = get_KohnSham_layouts(
                sl_diagonalize,
                'fd',  # XXX
                # choice of key 'fd' not so nice
                gd,
                bd,
                domainband_comm,
                dtype,
                buffer_size=buffer_size,
                timer=self.timer)

            # Layouts used for orthonormalizer
            sl_inverse_cholesky = self.parallel['sl_inverse_cholesky']
            if sl_inverse_cholesky is None:
                sl_inverse_cholesky = sl_default
            if sl_inverse_cholesky != sl_diagonalize:
                message = 'sl_inverse_cholesky != sl_diagonalize ' \
                    'is not implemented.'
                raise NotImplementedError(message)
            orthoksl = get_KohnSham_layouts(sl_inverse_cholesky,
                                            'fd',
                                            gd,
                                            bd,
                                            domainband_comm,
                                            dtype,
                                            buffer_size=buffer_size,
                                            timer=self.timer)

            # Use (at most) all available LCAO for initialization
            lcaonbands = min(nbands, nao // band_comm.size * band_comm.size)

            try:
                lcaobd = BandDescriptor(lcaonbands, band_comm, parstride_bands)
            except RuntimeError:
                initksl = None
            else:
                # Layouts used for general diagonalizer
                # (LCAO initialization)
                sl_lcao = self.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = sl_default
                initksl = get_KohnSham_layouts(sl_lcao,
                                               'lcao',
                                               gd,
                                               lcaobd,
                                               domainband_comm,
                                               dtype,
                                               nao=nao,
                                               timer=self.timer)

            self.wfs = mode(diagksl, orthoksl, initksl, **wfs_kwargs)
        else:
            self.wfs = mode(self, **wfs_kwargs)

        self.log(self.wfs, '\n')

    def dry_run(self):
        # Can be overridden like in gpaw.atom.atompaw
        print_cell(self.wfs.gd, self.atoms.pbc, self.log)
        print_positions(self.atoms, self.log)
        self.log.fd.flush()
        raise SystemExit
예제 #6
0
class LrTDDFT(ExcitationList):

    """Linear Response TDDFT excitation class

    Input parameters:

    calculator:
    the calculator object after a ground state calculation

    nspins:
    number of spins considered in the calculation
    Note: Valid only for unpolarised ground state calculation

    eps:
    Minimal occupation difference for a transition (default 0.001)

    istart:
    First occupied state to consider
    jend:
    Last unoccupied state to consider

    xc:
    Exchange-Correlation approximation in the Kernel
    derivative_level:
    0: use Exc, 1: use vxc, 2: use fxc  if available

    filename:
    read from a file
    """

    default_parameters = {
        'nspins': None,
        'eps': 0.001,
        'istart': 0,
        'jend': sys.maxsize,
        'energy_range': None,
        'xc': 'GS',
        'derivative_level': 1,
        'numscale': 0.00001,
        'txt': None,
        'filename': None,
        'finegrid': 2,
        'force_ApmB': False,  # for tests
        'eh_comm': None}  # parallelization over eh-pairs

    def __init__(self, calculator=None, **kwargs):

        self.timer = Timer()
        self.diagonalized = False

        changed = self.set(**kwargs)

        if isinstance(calculator, str):
            ExcitationList.__init__(self, None, self.txt)
            self.filename = calculator
        else:
            ExcitationList.__init__(self, calculator, self.txt)

        if self.filename is not None:
            self.read(self.filename)
            if set(['istart', 'jend', 'energy_range']) & set(changed):
                # the user has explicitely demanded these
                self.diagonalize()
            return

        if self.eh_comm is None:
            self.eh_comm = mpi.serial_comm
        elif isinstance(self.eh_comm, (mpi.world.__class__,
                                       mpi.serial_comm.__class__)):
            # Correct type already.
            pass
        else:
            # world should be a list of ranks:
            self.eh_comm = mpi.world.new_communicator(
                np.asarray(self.eh_comm))

        if calculator is not None and calculator.initialized:
            if not isinstance(calculator.wfs, FDWaveFunctions):
                raise RuntimeError(
                    'Linear response TDDFT supported only in real space mode')
            if calculator.wfs.kd.comm.size > 1:
                err_txt = 'Spin parallelization with Linear response '
                err_txt += "TDDFT. Use parallel={'domain': world.size} "
                err_txt += 'calculator parameter.'
                raise NotImplementedError(err_txt)
            if self.xc == 'GS':
                self.xc = calculator.hamiltonian.xc.name
            if calculator.parameters.mode != 'lcao':
                calculator.converge_wave_functions()
            if calculator.density.nct_G is None:
                spos_ac = calculator.initialize_positions()
                calculator.wfs.initialize(calculator.density,
                                          calculator.hamiltonian, spos_ac)

            self.update(calculator)

    def set(self, **kwargs):
        """Change parameters."""
        changed = []
        for key, value in LrTDDFT.default_parameters.items():
            if hasattr(self, key):
                value = getattr(self, key)  # do not overwrite
            setattr(self, key, kwargs.pop(key, value))
            if value != getattr(self, key):
                changed.append(key)

        for key in kwargs:
            raise KeyError('Unknown key ' + key)

        return changed

    def set_calculator(self, calculator):
        self.calculator = calculator
#        self.force_ApmB = parameters['force_ApmB']
        self.force_ApmB = None  # XXX

    def analyse(self, what=None, out=None, min=0.1):
        """Print info about the transitions.

        Parameters:
          1. what: I list of excitation indicees, None means all
          2. out : I where to send the output, None means sys.stdout
          3. min : I minimal contribution to list (0<min<1)
        """
        if what is None:
            what = range(len(self))
        elif isinstance(what, numbers.Integral):
            what = [what]

        if out is None:
            out = sys.stdout

        for i in what:
            print(str(i) + ':', self[i].analyse(min=min), file=out)

    def update(self, calculator=None, **kwargs):

        changed = self.set(**kwargs)
        if calculator is not None:
            changed = True
            self.set_calculator(calculator)

        if not changed:
            return

        self.forced_update()

    def forced_update(self):
        """Recalc yourself."""
        if not self.force_ApmB:
            Om = OmegaMatrix
            name = 'LrTDDFT'
            if self.xc:
                xc = XC(self.xc)
                if hasattr(xc, 'hybrid') and xc.hybrid > 0.0:
                    Om = ApmB
                    name = 'LrTDDFThyb'
        else:
            Om = ApmB
            name = 'LrTDDFThyb'

        self.kss = KSSingles(calculator=self.calculator,
                             nspins=self.nspins,
                             eps=self.eps,
                             istart=self.istart,
                             jend=self.jend,
                             energy_range=self.energy_range,
                             txt=self.txt)

        self.Om = Om(self.calculator, self.kss,
                     self.xc, self.derivative_level, self.numscale,
                     finegrid=self.finegrid, eh_comm=self.eh_comm,
                     txt=self.txt)
        self.name = name

    def diagonalize(self, **kwargs):
        self.set(**kwargs)
        self.timer.start('diagonalize')
        self.timer.start('omega')
        self.Om.diagonalize(self.istart, self.jend, self.energy_range)
        self.timer.stop('omega')
        self.diagonalized = True

        # remove old stuff
        self.timer.start('clean')
        while len(self):
            self.pop()
        self.timer.stop('clean')

        print('LrTDDFT digonalized:', file=self.txt)
        self.timer.start('build')
        for j in range(len(self.Om.kss)):
            self.append(LrTDDFTExcitation(self.Om, j))
            print(' ', str(self[-1]), file=self.txt)
        self.timer.stop('build')
        self.timer.stop('diagonalize')

    def get_Om(self):
        return self.Om

    def read(self, filename=None, fh=None):
        """Read myself from a file"""

        if fh is None:
            if filename.endswith('.gz'):
                try:
                    import gzip
                    f = gzip.open(filename, 'rt')
                except:
                    f = open(filename, 'r')
            else:
                f = open(filename, 'r')
            self.filename = filename
        else:
            f = fh
            self.filename = None

        # get my name
        s = f.readline().replace('\n', '')
        self.name = s.split()[1]

        self.xc = f.readline().replace('\n', '').split()[0]
        values = f.readline().split()
        self.eps = float(values[0])
        if len(values) > 1:
            self.derivative_level = int(values[1])
            self.numscale = float(values[2])
            self.finegrid = int(values[3])
        else:
            # old writing style, use old defaults
            self.numscale = 0.001

        self.kss = KSSingles(filehandle=f)
        if self.name == 'LrTDDFT':
            self.Om = OmegaMatrix(kss=self.kss, filehandle=f,
                                  txt=self.txt)
        else:
            self.Om = ApmB(kss=self.kss, filehandle=f,
                           txt=self.txt)
        self.Om.Kss(self.kss)

        # check if already diagonalized
        p = f.tell()
        s = f.readline()
        if s != '# Eigenvalues\n':
            # go back to previous position
            f.seek(p)
        else:
            self.diagonalized = True
            # load the eigenvalues
            n = int(f.readline().split()[0])
            for i in range(n):
                self.append(LrTDDFTExcitation(string=f.readline()))
            # load the eigenvectors
            f.readline()
            for i in range(n):
                values = f.readline().split()
                weights = [float(val) for val in values]
                self[i].f = np.array(weights)
                self[i].kss = self.kss

        if fh is None:
            f.close()

    def singlets_triplets(self):
        """Split yourself into a singlet and triplet object"""

        slr = LrTDDFT(None, nspins=self.nspins, eps=self.eps,
                      istart=self.istart, jend=self.jend, xc=self.xc,
                      derivative_level=self.derivative_level,
                      numscale=self.numscale)
        tlr = LrTDDFT(None, nspins=self.nspins, eps=self.eps,
                      istart=self.istart, jend=self.jend, xc=self.xc,
                      derivative_level=self.derivative_level,
                      numscale=self.numscale)
        slr.Om, tlr.Om = self.Om.singlets_triplets()
        for lr in [slr, tlr]:
            lr.kss = lr.Om.fullkss
        return slr, tlr

    def single_pole_approximation(self, i, j):
        """Return the excitation according to the
        single pole approximation. See e.g.:
        Grabo et al, Theochem 501 (2000) 353-367
        """
        for ij, kss in enumerate(self.kss):
            if kss.i == i and kss.j == j:
                return sqrt(self.Om.full[ij][ij]) * Hartree
                return self.Om.full[ij][ij] / kss.energy * Hartree

    def __str__(self):
        string = ExcitationList.__str__(self)
        string += '# derived from:\n'
        string += self.Om.kss.__str__()
        return string

    def write(self, filename=None, fh=None):
        """Write current state to a file.

        'filename' is the filename. If the filename ends in .gz,
        the file is automatically saved in compressed gzip format.

        'fh' is a filehandle. This can be used to write into already
        opened files.
        """

        if self.calculator is None:
            rank = mpi.world.rank
        else:
            rank = self.calculator.wfs.world.rank

        if rank == 0:
            if fh is None:
                if filename.endswith('.gz'):
                    try:
                        import gzip
                        f = gzip.open(filename, 'wt')
                    except:
                        f = open(filename, 'w')
                else:
                    f = open(filename, 'w')
            else:
                f = fh

            f.write('# ' + self.name + '\n')
            xc = self.xc
            if xc is None:
                xc = 'RPA'
            if self.calculator is not None:
                xc += ' ' + self.calculator.get_xc_functional()
            f.write(xc + '\n')
            f.write('%g %d %g %d' % (self.eps, int(self.derivative_level),
                                     self.numscale, int(self.finegrid)) + '\n')
            self.kss.write(fh=f)
            self.Om.write(fh=f)

            if len(self):
                f.write('# Eigenvalues\n')
                istart = self.istart
                if istart is None:
                    istart = self.kss.istart
                jend = self.jend
                if jend is None:
                    jend = self.kss.jend
                f.write('%d %d %d' % (len(self), istart, jend) + '\n')
                for ex in self:
                    f.write(ex.outstring())
                f.write('# Eigenvectors\n')
                for ex in self:
                    for w in ex.f:
                        f.write('%g ' % w)
                    f.write('\n')

            if fh is None:
                f.close()
        mpi.world.barrier()

    def __getitem__(self, i):
        if not self.diagonalized:
            self.diagonalize()
        return list.__getitem__(self, i)

    def __iter__(self):
        if not self.diagonalized:
            self.diagonalize()
        return list.__iter__(self)

    def __len__(self):
        if not self.diagonalized:
            self.diagonalize()
        return list.__len__(self)
예제 #7
0
    def get_rpa(self):
        """Calculate RPA and Hartree-fock part of the A+-B matrices."""

        # shorthands
        kss = self.fullkss
        finegrid = self.finegrid

        # calculate omega matrix
        nij = len(kss)
        print("RPAhyb", nij, "transitions", file=self.txt)

        AmB = np.zeros((nij, nij))
        ApB = self.ApB

        # storage place for Coulomb integrals
        integrals = {}

        for ij in range(nij):
            print("RPAhyb kss[" + "%d" % ij + "]=", kss[ij], file=self.txt)

            timer = Timer()
            timer.start("init")
            timer2 = Timer()

            # smooth density including compensation charges
            timer2.start("with_compensation_charges 0")
            rhot_p = kss[ij].with_compensation_charges(finegrid is not 0)
            timer2.stop()

            # integrate with 1/|r_1-r_2|
            timer2.start("poisson")
            phit_p = np.zeros(rhot_p.shape, rhot_p.dtype)
            self.poisson.solve(phit_p, rhot_p, charge=None)
            timer2.stop()

            timer.stop()
            t0 = timer.get_time("init")
            timer.start(ij)

            if finegrid == 1:
                rhot = kss[ij].with_compensation_charges()
                phit = self.gd.zeros()
                self.restrict(phit_p, phit)
            else:
                phit = phit_p
                rhot = rhot_p

            for kq in range(ij, nij):
                if kq != ij:
                    # smooth density including compensation charges
                    timer2.start("kq with_compensation_charges")
                    rhot = kss[kq].with_compensation_charges(finegrid is 2)
                    timer2.stop()
                pre = self.weight_Kijkq(ij, kq)

                timer2.start("integrate")
                I = self.Coulomb_integral_kss(kss[ij], kss[kq], phit, rhot)
                if kss[ij].spin == kss[kq].spin:
                    name = self.Coulomb_integral_name(kss[ij].i, kss[ij].j, kss[kq].i, kss[kq].j, kss[ij].spin)
                    integrals[name] = I
                ApB[ij, kq] = pre * I
                timer2.stop()

                if ij == kq:
                    epsij = kss[ij].get_energy() / kss[ij].get_weight()
                    AmB[ij, kq] += epsij
                    ApB[ij, kq] += epsij

            timer.stop()
            # timer2.write()
            if ij < (nij - 1):
                print("RPAhyb estimated time left", self.time_left(timer, t0, ij, nij), file=self.txt)

        # add HF parts and apply symmetry
        if hasattr(self.xc, "hybrid"):
            weight = self.xc.hybrid
        else:
            weight = 0.0
        for ij in range(nij):
            print("HF kss[" + "%d" % ij + "]", file=self.txt)
            timer = Timer()
            timer.start("init")
            timer.stop()
            t0 = timer.get_time("init")
            timer.start(ij)

            i = kss[ij].i
            j = kss[ij].j
            s = kss[ij].spin
            for kq in range(ij, nij):
                if kss[ij].pspin == kss[kq].pspin:
                    k = kss[kq].i
                    q = kss[kq].j
                    ikjq = self.Coulomb_integral_ijkq(i, k, j, q, s, integrals)
                    iqkj = self.Coulomb_integral_ijkq(i, q, k, j, s, integrals)
                    ApB[ij, kq] -= weight * (ikjq + iqkj)
                    AmB[ij, kq] -= weight * (ikjq - iqkj)

                ApB[kq, ij] = ApB[ij, kq]
                AmB[kq, ij] = AmB[ij, kq]

            timer.stop()
            if ij < (nij - 1):
                print("HF estimated time left", self.time_left(timer, t0, ij, nij), file=self.txt)

        return AmB
예제 #8
0
class RPACorrelation:
    def __init__(self,
                 calc,
                 xc='RPA',
                 filename=None,
                 skip_gamma=False,
                 qsym=True,
                 nlambda=None,
                 nfrequencies=16,
                 frequency_max=800.0,
                 frequency_scale=2.0,
                 frequencies=None,
                 weights=None,
                 world=mpi.world,
                 nblocks=1,
                 wstc=False,
                 txt=sys.stdout):

        if isinstance(calc, str):
            calc = GPAW(calc, txt=None, communicator=mpi.serial_comm)
        self.calc = calc

        if world.rank != 0:
            txt = devnull
        elif isinstance(txt, str):
            txt = open(txt, 'w')
        self.fd = txt

        self.timer = Timer()

        if frequencies is None:
            frequencies, weights = get_gauss_legendre_points(
                nfrequencies, frequency_max, frequency_scale)
            user_spec = False
        else:
            assert weights is not None
            user_spec = True

        self.omega_w = frequencies / Hartree
        self.weight_w = weights / Hartree

        if nblocks > 1:
            assert len(self.omega_w) % nblocks == 0
            assert wstc

        self.wstc = wstc
        self.nblocks = nblocks
        self.world = world

        self.skip_gamma = skip_gamma
        self.ibzq_qc = None
        self.weight_q = None
        self.initialize_q_points(qsym)

        # Energies for all q-vetors and cutoff energies:
        self.energy_qi = []

        self.filename = filename

        self.print_initialization(xc, frequency_scale, nlambda, user_spec)

    def initialize_q_points(self, qsym):
        kd = self.calc.wfs.kd
        self.bzq_qc = kd.get_bz_q_points(first=True)

        if not qsym:
            self.ibzq_qc = self.bzq_qc
            self.weight_q = np.ones(len(self.bzq_qc)) / len(self.bzq_qc)
        else:
            U_scc = kd.symmetry.op_scc
            self.ibzq_qc = kd.get_ibz_q_points(self.bzq_qc, U_scc)[0]
            self.weight_q = kd.q_weights

    def read(self):
        lines = open(self.filename).readlines()[1:]
        n = 0
        self.energy_qi = []
        nq = len(lines) // len(self.ecut_i)
        for q_c in self.ibzq_qc[:nq]:
            self.energy_qi.append([])
            for ecut in self.ecut_i:
                q1, q2, q3, ec, energy = [float(x) for x in lines[n].split()]
                self.energy_qi[-1].append(energy / Hartree)
                n += 1

                if (abs(q_c - (q1, q2, q3)).max() > 1e-4
                        or abs(int(ecut * Hartree) - ec) > 0):
                    self.energy_qi = []
                    return

        print('Read %d q-points from file: %s' % (nq, self.filename),
              file=self.fd)
        print(file=self.fd)

    def write(self):
        if self.world.rank == 0 and self.filename:
            fd = open(self.filename, 'w')
            print('#%9s %10s %10s %8s %12s' %
                  ('q1', 'q2', 'q3', 'E_cut', 'E_c(q)'),
                  file=fd)
            for energy_i, q_c in zip(self.energy_qi, self.ibzq_qc):
                for energy, ecut in zip(energy_i, self.ecut_i):
                    print('%10.4f %10.4f %10.4f %8d   %r' %
                          (tuple(q_c) + (ecut * Hartree, energy * Hartree)),
                          file=fd)

    def calculate(self, ecut, nbands=None, spin=False):
        """Calculate RPA correlation energy for one or several cutoffs.

        ecut: float or list of floats
            Plane-wave cutoff(s).
        nbands: int
            Number of bands (defaults to number of plane-waves).
        spin: bool
            Separate spin in response funtion.
            (Only needed for beyond RPA methods that inherit this function).
        """

        p = functools.partial(print, file=self.fd)

        if isinstance(ecut, (float, int)):
            ecut = ecut * (1 + 0.5 * np.arange(6))**(-2 / 3)
        self.ecut_i = np.asarray(np.sort(ecut)) / Hartree
        ecutmax = max(self.ecut_i)

        if nbands is None:
            p('Response function bands : Equal to number of plane waves')
        else:
            p('Response function bands : %s' % nbands)
        p('Plane wave cutoffs (eV) :', end='')
        for e in self.ecut_i:
            p(' {0:.3f}'.format(e * Hartree), end='')
        p()
        p()

        if self.filename and os.path.isfile(self.filename):
            self.read()
            self.world.barrier()

        chi0 = Chi0(self.calc,
                    1j * Hartree * self.omega_w,
                    eta=0.0,
                    intraband=False,
                    hilbert=False,
                    txt=self.fd,
                    timer=self.timer,
                    world=self.world,
                    no_optical_limit=self.wstc,
                    nblocks=self.nblocks)

        self.blockcomm = chi0.blockcomm

        wfs = self.calc.wfs

        if self.wstc:
            with self.timer('WSTC-init'):
                p('Using Wigner-Seitz truncated Coulomb potential.')
                self.wstc = WignerSeitzTruncatedCoulomb(
                    wfs.gd.cell_cv, wfs.kd.N_c, self.fd)

        nq = len(self.energy_qi)
        nw = len(self.omega_w)
        nGmax = max(
            count_reciprocal_vectors(ecutmax, wfs.gd, q_c)
            for q_c in self.ibzq_qc[nq:])
        mynGmax = (nGmax + self.nblocks - 1) // self.nblocks

        nx = (1 + spin) * nw * mynGmax * nGmax
        A1_x = np.empty(nx, complex)
        if self.nblocks > 1:
            A2_x = np.empty(nx, complex)
        else:
            A2_x = None

        self.timer.start('RPA')

        for q_c in self.ibzq_qc[nq:]:
            if np.allclose(q_c, 0.0) and self.skip_gamma:
                self.energy_qi.append(len(self.ecut_i) * [0.0])
                self.write()
                p('Not calculating E_c(q) at Gamma')
                p()
                continue

            thisqd = KPointDescriptor([q_c])
            pd = PWDescriptor(ecutmax, wfs.gd, complex, thisqd)
            nG = pd.ngmax
            mynG = (nG + self.nblocks - 1) // self.nblocks
            chi0.Ga = self.blockcomm.rank * mynG
            chi0.Gb = min(chi0.Ga + mynG, nG)

            shape = (1 + spin, nw, chi0.Gb - chi0.Ga, nG)
            chi0_swGG = A1_x[:np.prod(shape)].reshape(shape)
            chi0_swGG[:] = 0.0

            if self.wstc or np.allclose(q_c, 0.0):
                # Wings (x=0,1) and head (G=0) for optical limit and three
                # directions (v=0,1,2):
                chi0_swxvG = np.zeros((1 + spin, nw, 2, 3, nG), complex)
                chi0_swvv = np.zeros((1 + spin, nw, 3, 3), complex)
            else:
                chi0_swxvG = None
                chi0_swvv = None

            Q_aGii = chi0.initialize_paw_corrections(pd)

            # First not completely filled band:
            m1 = chi0.nocc1
            p('# %s  -  %s' % (len(self.energy_qi), ctime().split()[-2]))
            p('q = [%1.3f %1.3f %1.3f]' % tuple(q_c))

            energy_i = []
            for ecut in self.ecut_i:
                if ecut == ecutmax:
                    # Nothing to cut away:
                    cut_G = None
                    m2 = nbands or nG
                else:
                    cut_G = np.arange(nG)[pd.G2_qG[0] <= 2 * ecut]
                    m2 = len(cut_G)

                p('E_cut = %d eV / Bands = %d:' % (ecut * Hartree, m2))
                self.fd.flush()

                energy = self.calculate_q(chi0, pd, chi0_swGG, chi0_swxvG,
                                          chi0_swvv, Q_aGii, m1, m2, cut_G,
                                          A2_x)
                energy_i.append(energy)
                m1 = m2

                a = 1 / chi0.kncomm.size
                if ecut < ecutmax and a != 1.0:
                    # Chi0 will be summed again over chicomm, so we divide
                    # by its size:
                    chi0_swGG *= a
                    if chi0_swxvG is not None:
                        chi0_swxvG *= a
                        chi0_swvv *= a

            self.energy_qi.append(energy_i)
            self.write()
            p()

        e_i = np.dot(self.weight_q, np.array(self.energy_qi))
        p('==========================================================')
        p()
        p('Total correlation energy:')
        for e_cut, e in zip(self.ecut_i, e_i):
            p('%6.0f:   %6.4f eV' % (e_cut * Hartree, e * Hartree))
        p()

        self.energy_qi = []  # important if another calculation is performed

        if len(e_i) > 1:
            self.extrapolate(e_i)

        p('Calculation completed at: ', ctime())
        p()

        self.timer.stop('RPA')
        self.timer.write(self.fd)
        self.fd.flush()

        return e_i * Hartree

    @timer('chi0(q)')
    def calculate_q(self, chi0, pd, chi0_swGG, chi0_swxvG, chi0_swvv, Q_aGii,
                    m1, m2, cut_G, A2_x):
        chi0_wGG = chi0_swGG[0]
        if chi0_swxvG is not None:
            chi0_wxvG = chi0_swxvG[0]
            chi0_wvv = chi0_swvv[0]
        else:
            chi0_wxvG = None
            chi0_wvv = None
        chi0._calculate(pd, chi0_wGG, chi0_wxvG, chi0_wvv, Q_aGii, m1, m2,
                        [0, 1])

        print('E_c(q) = ', end='', file=self.fd)

        chi0_wGG = chi0.redistribute(chi0_wGG, A2_x)

        if not pd.kd.gamma or self.wstc:
            e = self.calculate_energy(pd, chi0_wGG, cut_G)
            print('%.3f eV' % (e * Hartree), file=self.fd)
            self.fd.flush()
        else:
            e = 0.0
            for v in range(3):
                chi0_wGG[:, 0] = chi0_wxvG[:, 0, v]
                chi0_wGG[:, :, 0] = chi0_wxvG[:, 1, v]
                chi0_wGG[:, 0, 0] = chi0_wvv[:, v, v]
                ev = self.calculate_energy(pd, chi0_wGG, cut_G)
                e += ev
                print('%.3f' % (ev * Hartree), end='', file=self.fd)
                if v < 2:
                    print('/', end='', file=self.fd)
                else:
                    print(' eV', file=self.fd)
                    self.fd.flush()
            e /= 3

        return e

    @timer('Energy')
    def calculate_energy(self, pd, chi0_wGG, cut_G):
        """Evaluate correlation energy from chi0."""

        if self.wstc:
            invG_G = (self.wstc.get_potential(pd) / (4 * pi))**0.5
        else:
            G_G = pd.G2_qG[0]**0.5  # |G+q|
            if pd.kd.gamma:
                G_G[0] = 1.0
            invG_G = 1.0 / G_G

        if cut_G is not None:
            invG_G = invG_G[cut_G]

        nG = len(invG_G)

        e_w = []
        for chi0_GG in chi0_wGG:
            if cut_G is not None:
                chi0_GG = chi0_GG.take(cut_G, 0).take(cut_G, 1)

            e_GG = (np.eye(nG) -
                    4 * np.pi * chi0_GG * invG_G * invG_G[:, np.newaxis])
            e = np.log(np.linalg.det(e_GG)) + nG - np.trace(e_GG)
            e_w.append(e.real)

        E_w = np.zeros_like(self.omega_w)
        self.blockcomm.all_gather(np.array(e_w), E_w)
        energy = np.dot(E_w, self.weight_w) / (2 * np.pi)
        self.E_w = E_w
        return energy

    def extrapolate(self, e_i):
        print('Extrapolated energies:', file=self.fd)
        ex_i = []
        for i in range(len(e_i) - 1):
            e1, e2 = e_i[i:i + 2]
            x1, x2 = self.ecut_i[i:i + 2]**-1.5
            ex = (e1 * x2 - e2 * x1) / (x2 - x1)
            ex_i.append(ex)

            print('  %4.0f -%4.0f:  %5.3f eV' %
                  (self.ecut_i[i] * Hartree, self.ecut_i[i + 1] * Hartree,
                   ex * Hartree),
                  file=self.fd)
        print(file=self.fd)
        self.fd.flush()

        return e_i * Hartree

    def print_initialization(self, xc, frequency_scale, nlambda, user_spec):
        p = functools.partial(print, file=self.fd)
        p('----------------------------------------------------------')
        p('Non-self-consistent %s correlation energy' % xc)
        p('----------------------------------------------------------')
        p('Started at:  ', ctime())
        p()
        p('Atoms                          :',
          self.calc.atoms.get_chemical_formula(mode='hill'))
        p('Ground state XC functional     :', self.calc.hamiltonian.xc.name)
        p('Valence electrons              :', self.calc.wfs.setups.nvalence)
        p('Number of bands                :', self.calc.wfs.bd.nbands)
        p('Number of spins                :', self.calc.wfs.nspins)
        p('Number of k-points             :', len(self.calc.wfs.kd.bzk_kc))
        p('Number of irreducible k-points :', len(self.calc.wfs.kd.ibzk_kc))
        p('Number of q-points             :', len(self.bzq_qc))
        p('Number of irreducible q-points :', len(self.ibzq_qc))
        p()
        for q, weight in zip(self.ibzq_qc, self.weight_q):
            p('    q: [%1.4f %1.4f %1.4f] - weight: %1.3f' %
              (q[0], q[1], q[2], weight))
        p()
        p('----------------------------------------------------------')
        p('----------------------------------------------------------')
        p()
        if nlambda is None:
            p('Analytical coupling constant integration')
        else:
            p('Numerical coupling constant integration using', nlambda,
              'Gauss-Legendre points')
        p()
        p('Frequencies')
        if not user_spec:
            p('    Gauss-Legendre integration with %s frequency points' %
              len(self.omega_w))
            p('    Transformed from [0,oo] to [0,1] using e^[-aw^(1/B)]')
            p('    Highest frequency point at %5.1f eV and B=%1.1f' %
              (self.omega_w[-1] * Hartree, frequency_scale))
        else:
            p('    User specified frequency integration with',
              len(self.omega_w), 'frequency points')
        p()
        p('Parallelization')
        p('    Total number of CPUs          : % s' % self.world.size)
        p('    G-vector decomposition       : % s' % self.nblocks)
        p('    K-point/band decomposition    : % s' %
          (self.world.size // self.nblocks))
        p()
예제 #9
0
 def start(self, name):
     Timer.start(self, name)
     abstime = time.time()
     t = self.timers[tuple(self.running)] + abstime
     self.txt.write('T%s >> %15.8f %s (%7.5fs) started\n'
                    % (self.srank, abstime, name, t))
예제 #10
0
파일: timing.py 프로젝트: thonmaker/gpaw
 def start(self, name):
     Timer.start(self, name)
     if name in self.compatible:
         self.hpm_start(name)
예제 #11
0
class ResonantRaman(Vibrations):
    """Class for calculating vibrational modes and
    resonant Raman intensities using finite difference.

    atoms:
        Atoms object
    Excitations:
        Class to calculate the excitations. The class object is
        initialized as::
            
            Excitations(atoms.get_calculator())
            
        or by reading form a file as::
            
            Excitations('filename', **exkwargs)
            
        The file is written by calling the method
        Excitations.write('filename').
    """
    def __init__(
            self,
            atoms,
            Excitations,
            indices=None,
            gsname='rraman',  # name for ground state calculations
            exname=None,  # name for excited state calculations
            delta=0.01,
            nfree=2,
            directions=None,
            exkwargs={},  # kwargs to be passed to Excitations
            exext='.ex.gz',  # extension for Excitation names
            txt='-',
            verbose=False):
        assert (nfree == 2)
        Vibrations.__init__(self, atoms, indices, gsname, delta, nfree)
        self.name = gsname + '-d%.3f' % delta
        if exname is None:
            exname = gsname
        self.exname = exname + '-d%.3f' % delta
        self.exext = exext

        if directions is None:
            self.directions = np.array([0, 1, 2])
        else:
            self.directions = np.array(directions)

        self.exobj = Excitations
        self.exkwargs = exkwargs

        self.timer = Timer()
        self.txt = get_txt(txt, rank)

        self.verbose = verbose

    def log(self, message, pre='# ', end='\n'):
        if self.verbose:
            self.txt.write(pre + message + end)
            self.txt.flush()

    def calculate(self, filename, fd):
        """Call ground and excited state calculation"""
        self.timer.start('Ground state')
        forces = self.atoms.get_forces()
        if rank == 0:
            pickle.dump(forces, fd)
            fd.close()
        self.timer.stop('Ground state')
        self.timer.start('Excitations')
        basename, _ = os.path.splitext(filename)
        excitations = self.exobj(self.atoms.get_calculator())
        excitations.write(basename + self.exext)
        self.timer.stop('Excitations')

    def get_intensity_tensor(self, omega, gamma=0.1):
        if not hasattr(self, 'modes'):
            self.read()

        if not hasattr(self, 'ex0'):
            eu = units.Hartree

            def get_me_tensor(exname, n, form='v'):
                def outer(ex):
                    me = ex.get_dipole_me(form=form)
                    return np.outer(me, me.conj())

                self.log('reading ' + exname)
                ex_p = self.exobj(exname, **self.exkwargs)
                if len(ex_p) != n:
                    raise RuntimeError(
                        ('excitations {0} of wrong length: {1} != {2}' +
                         ' exkwargs={3}').format(exname, len(ex_p), n,
                                                 self.exkwargs))
                m_ccp = np.empty((3, 3, len(ex_p)), dtype=complex)
                for p, ex in enumerate(ex_p):
                    m_ccp[:, :, p] = outer(ex)
                return m_ccp

            self.timer.start('reading excitations')
            self.log('reading ' + self.exname + '.eq' + self.exext)
            ex_p = self.exobj(self.exname + '.eq' + self.exext,
                              **self.exkwargs)
            n = len(ex_p)
            self.ex0 = np.array([ex.energy * eu for ex in ex_p])
            self.exminus = []
            self.explus = []
            for a in self.indices:
                for i in 'xyz':
                    name = '%s.%d%s' % (self.exname, a, i)
                    self.exminus.append(
                        get_me_tensor(name + '-' + self.exext, n))
                    self.explus.append(
                        get_me_tensor(name + '+' + self.exext, n))
            self.timer.stop('reading excitations')

        self.timer.start('amplitudes')

        self.timer.start('init')
        ndof = 3 * len(self.indices)
        amplitudes = np.zeros((ndof, 3, 3), dtype=complex)
        pre = 1. / (2 * self.delta)
        self.timer.stop('init')

        def kappa(me_ccp, e_p, omega, gamma, form='v'):
            """Kappa tensor after Profeta and Mauri
            PRB 63 (2001) 245415"""
            result = (me_ccp / (e_p - omega - 1j * gamma) + me_ccp.conj() /
                      (e_p + omega + 1j * gamma))
            return result.sum(2)

        r = 0
        for a in self.indices:
            for i in 'xyz':
                amplitudes[r] = pre * (
                    kappa(self.explus[r], self.ex0, omega, gamma) -
                    kappa(self.exminus[r], self.ex0, omega, gamma))
                r += 1

        self.timer.stop('amplitudes')

        # map to modes
        am = np.dot(amplitudes.T, self.modes.T).T
        return omega**4 * (am * am.conj()).real

    def get_intensities(self, omega, gamma=0.1):
        return self.get_intensity_tensor(omega, gamma).sum(axis=1).sum(axis=1)

    def get_spectrum(self,
                     omega,
                     gamma=0.1,
                     start=200.0,
                     end=4000.0,
                     npts=None,
                     width=4.0,
                     type='Gaussian',
                     method='standard',
                     direction='central',
                     intensity_unit='????',
                     normalize=False):
        """Get resonant Raman spectrum.

        The method returns wavenumbers in cm^-1 with corresponding
        absolute infrared intensity.
        Start and end point, and width of the Gaussian/Lorentzian should
        be given in cm^-1.
        normalize=True ensures the integral over the peaks to give the
        intensity.
        """

        self.type = type.lower()
        assert self.type in ['gaussian', 'lorentzian']

        if not npts:
            npts = int((end - start) / width * 10 + 1)
        frequencies = self.get_frequencies(method, direction).real
        intensities = self.get_intensities(omega, gamma)
        prefactor = 1
        if type == 'lorentzian':
            intensities = intensities * width * np.pi / 2.
            if normalize:
                prefactor = 2. / width / np.pi
        else:
            sigma = width / 2. / np.sqrt(2. * np.log(2.))
            if normalize:
                prefactor = 1. / sigma / np.sqrt(2 * np.pi)
        # Make array with spectrum data
        spectrum = np.empty(npts)
        energies = np.linspace(start, end, npts)
        for i, energy in enumerate(energies):
            energies[i] = energy
            if type == 'lorentzian':
                spectrum[i] = (intensities * 0.5 * width / np.pi / (
                    (frequencies - energy)**2 + 0.25 * width**2)).sum()
            else:
                spectrum[i] = (
                    intensities *
                    np.exp(-(frequencies - energy)**2 / 2. / sigma**2)).sum()
        return [energies, prefactor * spectrum]

    def write_spectrum(self,
                       omega,
                       gamma,
                       out='resonant-raman-spectra.dat',
                       start=200,
                       end=4000,
                       npts=None,
                       width=10,
                       type='Gaussian',
                       method='standard',
                       direction='central'):
        """Write out spectrum to file.

        First column is the wavenumber in cm^-1, the second column the
        absolute infrared intensities, and
        the third column the absorbance scaled so that data runs
        from 1 to 0. Start and end
        point, and width of the Gaussian/Lorentzian should be given
        in cm^-1."""
        energies, spectrum = self.get_spectrum(omega, gamma, start, end, npts,
                                               width, type, method, direction)

        # Write out spectrum in file. First column is absolute intensities.
        outdata = np.empty([len(energies), 3])
        outdata.T[0] = energies
        outdata.T[1] = spectrum
        fd = open(out, 'w')
        fd.write('# Resonant Raman spectrum\n')
        fd.write('# omega={0:g} eV, gamma={1:g} eV\n'.format(omega, gamma))
        fd.write('# %s folded, width=%g cm^-1\n' % (type.title(), width))
        fd.write('# [cm^-1]  [a.u.]\n')

        for row in outdata:
            fd.write('%.3f  %15.5g\n' % (row[0], row[1]))
        fd.close()

    def summary(self,
                omega,
                gamma=0.1,
                method='standard',
                direction='central',
                intensity_unit='(D/A)2/amu',
                log=sys.stdout):
        """Print summary for given omega [eV]"""
        hnu = self.get_energies(method, direction)
        s = 0.01 * units._e / units._c / units._hplanck
        intensities = self.get_intensities(omega, gamma)

        if isinstance(log, str):
            log = paropen(log, 'a')

        parprint('-------------------------------------', file=log)
        parprint(' excitation at ' + str(omega) + ' eV', file=log)
        parprint(' gamma ' + str(gamma) + ' eV\n', file=log)
        parprint(' Mode    Frequency        Intensity', file=log)
        parprint('  #    meV     cm^-1      [a.u.]', file=log)
        parprint('-------------------------------------', file=log)
        for n, e in enumerate(hnu):
            if e.imag != 0:
                c = 'i'
                e = e.imag
            else:
                c = ' '
                e = e.real
            parprint('%3d %6.1f%s  %7.1f%s  %9.3g' %
                     (n, 1000 * e, c, s * e, c, intensities[n]),
                     file=log)
        parprint('-------------------------------------', file=log)
        parprint('Zero-point energy: %.3f eV' % self.get_zero_point_energy(),
                 file=log)

    def __del__(self):
        self.timer.write(self.txt)
예제 #12
0
class GPAW(PAW, Calculator):
    """This is the ASE-calculator frontend for doing a PAW calculation."""

    implemented_properties = [
        'energy', 'forces', 'stress', 'dipole', 'magmom', 'magmoms'
    ]

    default_parameters = {
        'mode': 'fd',
        'xc': 'LDA',
        'occupations': None,
        'poissonsolver': None,
        'h': None,  # Angstrom
        'gpts': None,
        'kpts': [(0.0, 0.0, 0.0)],
        'nbands': None,
        'charge': 0,
        'setups': {},
        'basis': {},
        'spinpol': None,
        'fixdensity': False,
        'filter': None,
        'mixer': None,
        'eigensolver': None,
        'background_charge': None,
        'experimental': {
            'reuse_wfs_method': 'paw',
            'niter_fixdensity': 0,
            'magmoms': None,
            'soc': None,
            'kpt_refine': None
        },
        'external': None,
        'random': False,
        'hund': False,
        'maxiter': 333,
        'idiotproof': True,
        'symmetry': {
            'point_group': True,
            'time_reversal': True,
            'symmorphic': True,
            'tolerance': 1e-7,
            'do_not_symmetrize_the_density': False
        },
        'convergence': {
            'energy': 0.0005,  # eV / electron
            'density': 1.0e-4,
            'eigenstates': 4.0e-8,  # eV^2
            'bands': 'occupied',
            'forces': np.inf
        },  # eV / Ang
        'dtype': None,  # Deprecated
        'width': None,  # Deprecated
        'verbose': 0
    }

    default_parallel = {
        'kpt': None,
        'domain': gpaw.parsize_domain,
        'band': gpaw.parsize_bands,
        'order': 'kdb',
        'stridebands': False,
        'augment_grids': gpaw.augment_grids,
        'sl_auto': False,
        'sl_default': gpaw.sl_default,
        'sl_diagonalize': gpaw.sl_diagonalize,
        'sl_inverse_cholesky': gpaw.sl_inverse_cholesky,
        'sl_lcao': gpaw.sl_lcao,
        'sl_lrtddft': gpaw.sl_lrtddft,
        'use_elpa': False,
        'elpasolver': '2stage',
        'buffer_size': gpaw.buffer_size
    }

    def __init__(self,
                 restart=None,
                 ignore_bad_restart_file=False,
                 label=None,
                 atoms=None,
                 timer=None,
                 communicator=None,
                 txt='-',
                 parallel=None,
                 **kwargs):

        self.parallel = dict(self.default_parallel)
        if parallel:
            for key in parallel:
                if key not in self.default_parallel:
                    allowed = ', '.join(list(self.default_parallel.keys()))
                    raise TypeError('Unexpected keyword "{}" in "parallel" '
                                    'dictionary.  Must be one of: {}'.format(
                                        key, allowed))
            self.parallel.update(parallel)

        if timer is None:
            self.timer = Timer()
        else:
            self.timer = timer

        self.scf = None
        self.wfs = None
        self.occupations = None
        self.density = None
        self.hamiltonian = None
        self.spos_ac = None  # XXX store this in some better way.

        self.observers = []  # XXX move to self.scf
        self.initialized = False

        self.world = communicator
        if self.world is None:
            self.world = mpi.world
        elif not hasattr(self.world, 'new_communicator'):
            self.world = mpi.world.new_communicator(np.asarray(self.world))

        self.log = GPAWLogger(world=self.world)
        self.log.fd = txt

        self.reader = None

        Calculator.__init__(self, restart, ignore_bad_restart_file, label,
                            atoms, **kwargs)

    def __del__(self):
        # Write timings and close reader if necessary.

        # If we crashed in the constructor (e.g. a bad keyword), we may not
        # have the normally expected attributes:
        if hasattr(self, 'timer'):
            self.timer.write(self.log.fd)

        if hasattr(self, 'reader') and self.reader is not None:
            self.reader.close()

    def write(self, filename, mode=''):
        self.log('Writing to {} (mode={!r})\n'.format(filename, mode))
        writer = Writer(filename, self.world)
        self._write(writer, mode)
        writer.close()
        self.world.barrier()

    def _write(self, writer, mode):
        from ase.io.trajectory import write_atoms
        writer.write(version=1,
                     gpaw_version=gpaw.__version__,
                     ha=Ha,
                     bohr=Bohr)

        write_atoms(writer.child('atoms'), self.atoms)
        writer.child('results').write(**self.results)
        writer.child('parameters').write(**self.todict())

        self.density.write(writer.child('density'))
        self.hamiltonian.write(writer.child('hamiltonian'))
        self.occupations.write(writer.child('occupations'))
        self.scf.write(writer.child('scf'))
        self.wfs.write(writer.child('wave_functions'), mode == 'all')

        return writer

    def _set_atoms(self, atoms):
        check_atoms_too_close(atoms)
        self.atoms = atoms
        # GPAW works in terms of the scaled positions.  We want to
        # extract the scaled positions in only one place, and that is
        # here.  No other place may recalculate them, or we might end up
        # with rounding errors and inconsistencies.
        self.spos_ac = atoms.get_scaled_positions() % 1.0

    def read(self, filename):
        from ase.io.trajectory import read_atoms
        self.log('Reading from {}'.format(filename))

        self.reader = reader = Reader(filename)

        atoms = read_atoms(reader.atoms)
        self._set_atoms(atoms)

        res = reader.results
        self.results = dict((key, res.get(key)) for key in res.keys())
        if self.results:
            self.log('Read {}'.format(', '.join(sorted(self.results))))

        self.log('Reading input parameters:')
        # XXX param
        self.parameters = self.get_default_parameters()
        dct = {}
        for key, value in reader.parameters.asdict().items():
            if (isinstance(value, dict)
                    and isinstance(self.parameters[key], dict)):
                self.parameters[key].update(value)
            else:
                self.parameters[key] = value
            dct[key] = self.parameters[key]

        self.log.print_dict(dct)
        self.log()

        self.initialize(reading=True)

        self.density.read(reader)
        self.hamiltonian.read(reader)
        self.occupations.read(reader)
        self.scf.read(reader)
        self.wfs.read(reader)

        # We need to do this in a better way:  XXX
        from gpaw.utilities.partition import AtomPartition
        atom_partition = AtomPartition(self.wfs.gd.comm,
                                       np.zeros(len(self.atoms), dtype=int))
        self.wfs.atom_partition = atom_partition
        self.density.atom_partition = atom_partition
        self.hamiltonian.atom_partition = atom_partition
        rank_a = self.density.gd.get_ranks_from_positions(self.spos_ac)
        new_atom_partition = AtomPartition(self.density.gd.comm, rank_a)
        for obj in [self.density, self.hamiltonian]:
            obj.set_positions_without_ruining_everything(
                self.spos_ac, new_atom_partition)

        self.hamiltonian.xc.read(reader)

        if self.hamiltonian.xc.name == 'GLLBSC':
            # XXX GLLB: See test/lcaotddft/gllbsc.py
            self.occupations.calculate(self.wfs)

        return reader

    def check_state(self, atoms, tol=1e-15):
        system_changes = Calculator.check_state(self, atoms, tol)
        if 'positions' not in system_changes:
            if self.hamiltonian:
                if self.hamiltonian.vext:
                    if self.hamiltonian.vext.vext_g is None:
                        # QMMM atoms have moved:
                        system_changes.append('positions')
        return system_changes

    def calculate(self,
                  atoms=None,
                  properties=['energy'],
                  system_changes=['cell']):
        """Calculate things."""

        Calculator.calculate(self, atoms)
        atoms = self.atoms

        if system_changes:
            self.log('System changes:', ', '.join(system_changes), '\n')
            if system_changes == ['positions']:
                # Only positions have changed:
                self.density.reset()
            else:
                # Drastic changes:
                self.wfs = None
                self.occupations = None
                self.density = None
                self.hamiltonian = None
                self.scf = None
                self.initialize(atoms)

            self.set_positions(atoms)

        if not self.initialized:
            self.initialize(atoms)
            self.set_positions(atoms)

        if not (self.wfs.positions_set and self.hamiltonian.positions_set):
            self.set_positions(atoms)

        if not self.scf.converged:
            print_cell(self.wfs.gd, self.atoms.pbc, self.log)

            with self.timer('SCF-cycle'):
                self.scf.run(self.wfs, self.hamiltonian, self.density,
                             self.occupations, self.log, self.call_observers)

            self.log('\nConverged after {} iterations.\n'.format(
                self.scf.niter))

            e_free = self.hamiltonian.e_total_free
            e_extrapolated = self.hamiltonian.e_total_extrapolated
            self.results['energy'] = e_extrapolated * Ha
            self.results['free_energy'] = e_free * Ha

            dipole_v = self.density.calculate_dipole_moment() * Bohr
            self.log(
                'Dipole moment: ({:.6f}, {:.6f}, {:.6f}) |e|*Ang\n'.format(
                    *dipole_v))
            self.results['dipole'] = dipole_v

            if self.wfs.nspins == 2 or not self.density.collinear:
                totmom_v, magmom_av = self.density.estimate_magnetic_moments()
                self.log(
                    'Total magnetic moment: ({:.6f}, {:.6f}, {:.6f})'.format(
                        *totmom_v))
                self.log('Local magnetic moments:')
                symbols = self.atoms.get_chemical_symbols()
                for a, mom_v in enumerate(magmom_av):
                    self.log('{:4} {:2} ({:9.6f}, {:9.6f}, {:9.6f})'.format(
                        a, symbols[a], *mom_v))
                self.log()
                self.results['magmom'] = self.occupations.magmom
                self.results['magmoms'] = magmom_av[:, 2].copy()

            self.summary()

            self.call_observers(self.scf.niter, final=True)

        if 'forces' in properties:
            with self.timer('Forces'):
                F_av = calculate_forces(self.wfs, self.density,
                                        self.hamiltonian, self.log)
                self.results['forces'] = F_av * (Ha / Bohr)

        if 'stress' in properties:
            with self.timer('Stress'):
                try:
                    stress = calculate_stress(self).flat[[0, 4, 8, 5, 2, 1]]
                except NotImplementedError:
                    # Our ASE Calculator base class will raise
                    # PropertyNotImplementedError for us.
                    pass
                else:
                    self.results['stress'] = stress * (Ha / Bohr**3)

    def summary(self):
        efermi = self.occupations.fermilevel
        self.hamiltonian.summary(efermi, self.log)
        self.density.summary(self.atoms, self.occupations.magmom, self.log)
        self.occupations.summary(self.log)
        self.wfs.summary(self.log)
        try:
            bandgap(self, output=self.log.fd, efermi=efermi * Ha)
        except ValueError:
            pass
        self.log.fd.flush()

    def set(self, **kwargs):
        """Change parameters for calculator.

        Examples::

            calc.set(xc='PBE')
            calc.set(nbands=20, kpts=(4, 1, 1))
        """

        # Verify that keys are consistent with default ones.
        for key in kwargs:
            if key != 'txt' and key not in self.default_parameters:
                raise TypeError('Unknown GPAW parameter: {}'.format(key))

            if key in ['convergence', 'symmetry', 'experimental'
                       ] and isinstance(kwargs[key], dict):
                # For values that are dictionaries, verify subkeys, too.
                default_dict = self.default_parameters[key]
                for subkey in kwargs[key]:
                    if subkey not in default_dict:
                        allowed = ', '.join(list(default_dict.keys()))
                        raise TypeError('Unknown subkeyword "{}" of keyword '
                                        '"{}".  Must be one of: {}'.format(
                                            subkey, key, allowed))

        changed_parameters = Calculator.set(self, **kwargs)

        for key in ['setups', 'basis']:
            if key in changed_parameters:
                dct = changed_parameters[key]
                if isinstance(dct, dict) and None in dct:
                    dct['default'] = dct.pop(None)
                    warnings.warn('Please use {key}={dct}'.format(key=key,
                                                                  dct=dct))

        # We need to handle txt early in order to get logging up and running:
        if 'txt' in changed_parameters:
            self.log.fd = changed_parameters.pop('txt')

        if not changed_parameters:
            return {}

        self.initialized = False
        self.scf = None
        self.results = {}

        self.log('Input parameters:')
        self.log.print_dict(changed_parameters)
        self.log()

        for key in changed_parameters:
            if key in ['eigensolver', 'convergence'] and self.wfs:
                self.wfs.set_eigensolver(None)

            if key in [
                    'mixer', 'verbose', 'txt', 'hund', 'random', 'eigensolver',
                    'idiotproof'
            ]:
                continue

            if key in ['convergence', 'fixdensity', 'maxiter']:
                continue

            # Check nested arguments
            if key in ['experimental']:
                changed_parameters2 = changed_parameters[key]
                for key2 in changed_parameters2:
                    if key2 in ['kpt_refine', 'magmoms', 'soc']:
                        self.wfs = None
                    elif key2 in ['reuse_wfs_method', 'niter_fixdensity']:
                        continue
                    else:
                        raise TypeError('Unknown keyword argument:', key2)
                continue

            # More drastic changes:
            if self.wfs:
                self.wfs.set_orthonormalized(False)
            if key in ['external', 'xc', 'poissonsolver']:
                self.hamiltonian = None
            elif key in ['occupations', 'width']:
                pass
            elif key in ['charge', 'background_charge']:
                self.hamiltonian = None
                self.density = None
                self.wfs = None
            elif key in ['kpts', 'nbands', 'symmetry']:
                self.wfs = None
            elif key in ['h', 'gpts', 'setups', 'spinpol', 'dtype', 'mode']:
                self.density = None
                self.hamiltonian = None
                self.wfs = None
            elif key in ['basis']:
                self.wfs = None
            else:
                raise TypeError('Unknown keyword argument: "%s"' % key)

    def initialize_positions(self, atoms=None):
        """Update the positions of the atoms."""
        self.log('Initializing position-dependent things.\n')
        if atoms is None:
            atoms = self.atoms
        else:
            atoms = atoms.copy()
            self._set_atoms(atoms)

        mpi.synchronize_atoms(atoms, self.world)

        rank_a = self.wfs.gd.get_ranks_from_positions(self.spos_ac)
        atom_partition = AtomPartition(self.wfs.gd.comm, rank_a, name='gd')
        self.wfs.set_positions(self.spos_ac, atom_partition)
        self.density.set_positions(self.spos_ac, atom_partition)
        self.hamiltonian.set_positions(self.spos_ac, atom_partition)

    def set_positions(self, atoms=None):
        """Update the positions of the atoms and initialize wave functions."""
        self.initialize_positions(atoms)

        nlcao, nrand = self.wfs.initialize(self.density, self.hamiltonian,
                                           self.spos_ac)
        if nlcao + nrand:
            self.log('Creating initial wave functions:')
            if nlcao:
                self.log(' ', plural(nlcao, 'band'), 'from LCAO basis set')
            if nrand:
                self.log(' ', plural(nrand, 'band'), 'from random numbers')
            self.log()

        self.wfs.eigensolver.reset()
        self.scf.reset()
        print_positions(self.atoms, self.log, self.density.magmom_av)

    def initialize(self, atoms=None, reading=False):
        """Inexpensive initialization."""

        self.log('Initialize ...\n')

        if atoms is None:
            atoms = self.atoms
        else:
            atoms = atoms.copy()
            self._set_atoms(atoms)

        par = self.parameters

        natoms = len(atoms)

        cell_cv = atoms.get_cell() / Bohr
        number_of_lattice_vectors = cell_cv.any(axis=1).sum()
        if number_of_lattice_vectors < 3:
            raise ValueError(
                'GPAW requires 3 lattice vectors.  Your system has {}.'.format(
                    number_of_lattice_vectors))

        pbc_c = atoms.get_pbc()
        assert len(pbc_c) == 3
        magmom_a = atoms.get_initial_magnetic_moments()

        if par.experimental.get('magmoms') is not None:
            magmom_av = np.array(par.experimental['magmoms'], float)
            collinear = False
        else:
            magmom_av = np.zeros((natoms, 3))
            magmom_av[:, 2] = magmom_a
            collinear = True

        mpi.synchronize_atoms(atoms, self.world)

        # Generate new xc functional only when it is reset by set
        # XXX sounds like this should use the _changed_keywords dictionary.
        if self.hamiltonian is None or self.hamiltonian.xc is None:
            if isinstance(par.xc, (basestring, dict)):
                xc = XC(par.xc, collinear=collinear, atoms=atoms)
            else:
                xc = par.xc
        else:
            xc = self.hamiltonian.xc

        mode = par.mode
        if isinstance(mode, basestring):
            mode = {'name': mode}
        if isinstance(mode, dict):
            mode = create_wave_function_mode(**mode)

        if par.dtype == complex:
            warnings.warn('Use mode={}(..., force_complex_dtype=True) '
                          'instead of dtype=complex'.format(mode.name.upper()))
            mode.force_complex_dtype = True
            del par['dtype']
            par.mode = mode

        if xc.orbital_dependent and mode.name == 'lcao':
            raise ValueError('LCAO mode does not support '
                             'orbital-dependent XC functionals.')

        realspace = (mode.name != 'pw' and mode.interpolation != 'fft')

        if not realspace:
            pbc_c = np.ones(3, bool)

        self.create_setups(mode, xc)

        if par.hund:
            if natoms != 1:
                raise ValueError('hund=True arg only valid for single atoms!')
            spinpol = True
            magmom_av[0, 2] = self.setups[0].get_hunds_rule_moment(par.charge)

        if collinear:
            magnetic = magmom_av.any()

            spinpol = par.spinpol
            if spinpol is None:
                spinpol = magnetic
            elif magnetic and not spinpol:
                raise ValueError('Non-zero initial magnetic moment for a ' +
                                 'spin-paired calculation!')
            nspins = 1 + int(spinpol)

            if spinpol:
                self.log('Spin-polarized calculation.')
                self.log('Magnetic moment: {:.6f}\n'.format(magmom_av.sum()))
            else:
                self.log('Spin-paired calculation\n')
        else:
            nspins = 1
            self.log('Non-collinear calculation.')
            self.log('Magnetic moment: ({:.6f}, {:.6f}, {:.6f})\n'.format(
                *magmom_av.sum(0)))

        if isinstance(par.background_charge, dict):
            background = create_background_charge(**par.background_charge)
        else:
            background = par.background_charge

        nao = self.setups.nao
        nvalence = self.setups.nvalence - par.charge
        if par.background_charge is not None:
            nvalence += background.charge

        M = np.linalg.norm(magmom_av.sum(0))

        nbands = par.nbands

        orbital_free = any(setup.orbital_free for setup in self.setups)
        if orbital_free:
            nbands = 1

        if isinstance(nbands, basestring):
            if nbands == 'nao':
                nbands = nao
            elif nbands[-1] == '%':
                basebands = (nvalence + M) / 2
                nbands = int(np.ceil(float(nbands[:-1]) / 100 * basebands))
            else:
                raise ValueError('Integer expected: Only use a string '
                                 'if giving a percentage of occupied bands')

        if nbands is None:
            # Number of bound partial waves:
            nbandsmax = sum(setup.get_default_nbands()
                            for setup in self.setups)
            nbands = int(np.ceil((1.2 * (nvalence + M) / 2))) + 4
            if nbands > nbandsmax:
                nbands = nbandsmax
            if mode.name == 'lcao' and nbands > nao:
                nbands = nao
        elif nbands <= 0:
            nbands = max(1, int(nvalence + M + 0.5) // 2 + (-nbands))

        if nbands > nao and mode.name == 'lcao':
            raise ValueError('Too many bands for LCAO calculation: '
                             '%d bands and only %d atomic orbitals!' %
                             (nbands, nao))

        if nvalence < 0:
            raise ValueError(
                'Charge %f is not possible - not enough valence electrons' %
                par.charge)

        if nvalence > 2 * nbands and not orbital_free:
            raise ValueError('Too few bands!  Electrons: %f, bands: %d' %
                             (nvalence, nbands))

        self.create_occupations(magmom_av[:, 2].sum(), orbital_free)

        if self.scf is None:
            self.create_scf(nvalence, mode)

        self.create_symmetry(magmom_av, cell_cv)

        if not collinear:
            nbands *= 2

        if not self.wfs:
            self.create_wave_functions(mode, realspace, nspins, collinear,
                                       nbands, nao, nvalence, self.setups,
                                       cell_cv, pbc_c)
        else:
            self.wfs.set_setups(self.setups)

        if not self.wfs.eigensolver:
            self.create_eigensolver(xc, nbands, mode)

        if self.density is None and not reading:
            assert not par.fixdensity, 'No density to fix!'

        olddens = None
        if (self.density is not None and
            (self.density.gd.parsize_c != self.wfs.gd.parsize_c).any()):
            # Domain decomposition has changed, so we need to
            # reinitialize density and hamiltonian:
            if par.fixdensity:
                olddens = self.density

            self.density = None
            self.hamiltonian = None

        if self.density is None:
            self.create_density(realspace, mode, background)

        # XXXXXXXXXX if setups change, then setups.core_charge may change.
        # But that parameter was supplied in Density constructor!
        # This surely is a bug!
        self.density.initialize(self.setups, self.timer, magmom_av, par.hund)
        self.density.set_mixer(par.mixer)
        if self.density.mixer.driver.name == 'dummy' or par.fixdensity:
            self.log('No density mixing\n')
        else:
            self.log(self.density.mixer, '\n')
        self.density.fixed = par.fixdensity
        self.density.log = self.log

        if olddens is not None:
            self.density.initialize_from_other_density(olddens,
                                                       self.wfs.kptband_comm)

        if self.hamiltonian is None:
            self.create_hamiltonian(realspace, mode, xc)

        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)
        description = xc.get_description()
        if description is not None:
            self.log('XC parameters: {}\n'.format('\n  '.join(
                description.splitlines())))

        if xc.name == 'GLLBSC' and olddens is not None:
            xc.heeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeelp(olddens)

        self.print_memory_estimate(maxdepth=memory_estimate_depth + 1)

        print_parallelization_details(self.wfs, self.hamiltonian, self.log)

        self.log('Number of atoms:', natoms)
        self.log('Number of atomic orbitals:', self.wfs.setups.nao)
        self.log('Number of bands in calculation:', self.wfs.bd.nbands)
        self.log('Bands to converge: ', end='')
        n = par.convergence.get('bands', 'occupied')
        if n == 'occupied':
            self.log('occupied states only')
        elif n == 'all':
            self.log('all')
        else:
            self.log('%d lowest bands' % n)
        self.log('Number of valence electrons:', self.wfs.nvalence)

        self.log(flush=True)

        self.timer.print_info(self)

        if dry_run:
            self.dry_run()

        if (realspace and self.hamiltonian.poisson.get_description()
                == 'FDTD+TDDFT'):
            self.hamiltonian.poisson.set_density(self.density)
            self.hamiltonian.poisson.print_messages(self.log)
            self.log.fd.flush()

        self.initialized = True
        self.log('... initialized\n')

    def create_setups(self, mode, xc):
        if self.parameters.filter is None and mode.name != 'pw':
            gamma = 1.6
            N_c = self.parameters.get('gpts')
            if N_c is None:
                h = (self.parameters.h or 0.2) / Bohr
            else:
                icell_vc = np.linalg.inv(self.atoms.cell)
                h = ((icell_vc**2).sum(0)**-0.5 / N_c).max() / Bohr

            def filter(rgd, rcut, f_r, l=0):
                gcut = np.pi / h - 2 / rcut / gamma
                ftmp = rgd.filter(f_r, rcut * gamma, gcut, l)
                f_r[:] = ftmp[:len(f_r)]
        else:
            filter = self.parameters.filter

        Z_a = self.atoms.get_atomic_numbers()
        self.setups = Setups(Z_a, self.parameters.setups,
                             self.parameters.basis, xc, filter, self.world)
        self.log(self.setups)

    def create_grid_descriptor(self, N_c, cell_cv, pbc_c, domain_comm,
                               parsize_domain):
        return GridDescriptor(N_c, cell_cv, pbc_c, domain_comm, parsize_domain)

    def create_occupations(self, magmom, orbital_free):
        occ = self.parameters.occupations

        if occ is None:
            if orbital_free:
                occ = {'name': 'orbital-free'}
            else:
                width = self.parameters.width
                if width is not None:
                    warnings.warn(
                        'Please use occupations=FermiDirac({})'.format(width))
                elif self.atoms.pbc.any():
                    width = 0.1  # eV
                else:
                    width = 0.0
                occ = {'name': 'fermi-dirac', 'width': width}

        if isinstance(occ, dict):
            occ = create_occupation_number_object(**occ)

        if self.parameters.fixdensity:
            occ.fixed_fermilevel = True
            if self.occupations:
                occ.fermilevel = self.occupations.fermilevel

        self.occupations = occ

        # If occupation numbers are changed, and we have wave functions,
        # recalculate the occupation numbers
        if self.wfs is not None:
            self.occupations.calculate(self.wfs)

        self.occupations.magmom = magmom

        self.log(self.occupations)

    def create_scf(self, nvalence, mode):
        # if mode.name == 'lcao':
        #     niter_fixdensity = 0
        # else:
        #     niter_fixdensity = 2

        nv = max(nvalence, 1)
        cc = self.parameters.convergence
        self.scf = SCFLoop(
            cc.get('eigenstates', 4.0e-8) / Ha**2 * nv,
            cc.get('energy', 0.0005) / Ha * nv,
            cc.get('density', 1.0e-4) * nv,
            cc.get('forces', np.inf) / (Ha / Bohr),
            self.parameters.maxiter,
            # XXX make sure niter_fixdensity value is *always* set from default
            # Subdictionary defaults seem to not be set when user provides
            # e.g. {}.  We should change that so it works like the ordinary
            # parameters.
            self.parameters.experimental.get('niter_fixdensity', 0),
            nv)
        self.log(self.scf)

    def create_symmetry(self, magmom_av, cell_cv):
        symm = self.parameters.symmetry
        if symm == 'off':
            symm = {'point_group': False, 'time_reversal': False}
        m_av = magmom_av.round(decimals=3)  # round off
        id_a = [id + tuple(m_v) for id, m_v in zip(self.setups.id_a, m_av)]
        self.symmetry = Symmetry(id_a, cell_cv, self.atoms.pbc, **symm)
        self.symmetry.analyze(self.spos_ac)
        self.setups.set_symmetry(self.symmetry)

    def create_eigensolver(self, xc, nbands, mode):
        # Number of bands to converge:
        nbands_converge = self.parameters.convergence.get('bands', 'occupied')
        if nbands_converge == 'all':
            nbands_converge = nbands
        elif nbands_converge != 'occupied':
            assert isinstance(nbands_converge, int)
            if nbands_converge < 0:
                nbands_converge += nbands
        eigensolver = get_eigensolver(self.parameters.eigensolver, mode,
                                      self.parameters.convergence)
        eigensolver.nbands_converge = nbands_converge
        # XXX Eigensolver class doesn't define an nbands_converge property

        if isinstance(xc, SIC):
            eigensolver.blocksize = 1

        self.wfs.set_eigensolver(eigensolver)

        self.log('Eigensolver\n  ', self.wfs.eigensolver, '\n')

    def create_density(self, realspace, mode, background):
        gd = self.wfs.gd

        big_gd = gd.new_descriptor(comm=self.world)
        # Check whether grid is too small.  8 is smallest admissible.
        # (we decide this by how difficult it is to make the tests pass)
        # (Actually it depends on stencils!  But let the user deal with it)
        N_c = big_gd.get_size_of_global_array(pad=True)
        too_small = np.any(N_c / big_gd.parsize_c < 8)
        if (self.parallel['augment_grids'] and not too_small
                and mode.name != 'pw'):
            aux_gd = big_gd
        else:
            aux_gd = gd

        redistributor = GridRedistributor(self.world, self.wfs.kptband_comm,
                                          gd, aux_gd)

        # Construct grid descriptor for fine grids for densities
        # and potentials:
        finegd = aux_gd.refine()

        kwargs = dict(gd=gd,
                      finegd=finegd,
                      nspins=self.wfs.nspins,
                      collinear=self.wfs.collinear,
                      charge=self.parameters.charge +
                      self.wfs.setups.core_charge,
                      redistributor=redistributor,
                      background_charge=background)

        if realspace:
            self.density = RealSpaceDensity(stencil=mode.interpolation,
                                            **kwargs)
        else:
            self.density = pw.ReciprocalSpaceDensity(**kwargs)

        self.log(self.density, '\n')

    def create_hamiltonian(self, realspace, mode, xc):
        dens = self.density
        kwargs = dict(gd=dens.gd,
                      finegd=dens.finegd,
                      nspins=dens.nspins,
                      collinear=dens.collinear,
                      setups=dens.setups,
                      timer=self.timer,
                      xc=xc,
                      world=self.world,
                      redistributor=dens.redistributor,
                      vext=self.parameters.external,
                      psolver=self.parameters.poissonsolver)
        if realspace:
            self.hamiltonian = RealSpaceHamiltonian(stencil=mode.interpolation,
                                                    **kwargs)
            xc.set_grid_descriptor(self.hamiltonian.finegd)
        else:
            # This code will work if dens.redistributor uses
            # ordinary density.gd as aux_gd
            gd = dens.finegd

            xc_redist = None
            if self.parallel['augment_grids']:
                from gpaw.grid_descriptor import BadGridError
                try:
                    aux_gd = gd.new_descriptor(comm=self.world)
                except BadGridError as err:
                    import warnings
                    warnings.warn('Ignoring augment_grids: {}'.format(err))
                else:
                    bcast_comm = dens.redistributor.broadcast_comm
                    xc_redist = GridRedistributor(self.world, bcast_comm, gd,
                                                  aux_gd)

            self.hamiltonian = pw.ReciprocalSpaceHamiltonian(
                pd2=dens.pd2,
                pd3=dens.pd3,
                realpbc_c=self.atoms.pbc,
                xc_redistributor=xc_redist,
                **kwargs)
            xc.set_grid_descriptor(self.hamiltonian.xc_gd)

        self.hamiltonian.soc = self.parameters.experimental.get('soc')
        self.log(self.hamiltonian, '\n')

    def create_kpoint_descriptor(self, nspins):
        par = self.parameters

        bzkpts_kc = kpts2ndarray(par.kpts, self.atoms)
        kpt_refine = par.experimental.get('kpt_refine')
        if kpt_refine is None:
            kd = KPointDescriptor(bzkpts_kc, nspins)

            self.timer.start('Set symmetry')
            kd.set_symmetry(self.atoms, self.symmetry, comm=self.world)
            self.timer.stop('Set symmetry')

        else:
            self.timer.start('Set k-point refinement')
            kd = create_kpoint_descriptor_with_refinement(kpt_refine,
                                                          bzkpts_kc,
                                                          nspins,
                                                          self.atoms,
                                                          self.symmetry,
                                                          comm=self.world,
                                                          timer=self.timer)
            self.timer.stop('Set k-point refinement')
            # Update quantities which might have changed, if symmetry
            # was changed
            self.symmetry = kd.symmetry
            self.setups.set_symmetry(kd.symmetry)

        self.log(kd)

        return kd

    def create_wave_functions(self, mode, realspace, nspins, collinear, nbands,
                              nao, nvalence, setups, cell_cv, pbc_c):
        par = self.parameters

        kd = self.create_kpoint_descriptor(nspins)

        parallelization = mpi.Parallelization(self.world, nspins * kd.nibzkpts)

        parsize_kpt = self.parallel['kpt']
        parsize_domain = self.parallel['domain']
        parsize_bands = self.parallel['band']

        ndomains = None
        if parsize_domain is not None:
            ndomains = np.prod(parsize_domain)
        parallelization.set(kpt=parsize_kpt,
                            domain=ndomains,
                            band=parsize_bands)
        comms = parallelization.build_communicators()
        domain_comm = comms['d']
        kpt_comm = comms['k']
        band_comm = comms['b']
        kptband_comm = comms['D']
        domainband_comm = comms['K']

        self.comms = comms

        if par.gpts is not None:
            if par.h is not None:
                raise ValueError("""You can't use both "gpts" and "h"!""")
            N_c = np.array(par.gpts)
        else:
            h = par.h
            if h is not None:
                h /= Bohr
            N_c = get_number_of_grid_points(cell_cv, h, mode, realspace,
                                            kd.symmetry)

        self.symmetry.check_grid(N_c)

        kd.set_communicator(kpt_comm)

        parstride_bands = self.parallel['stridebands']

        bd = BandDescriptor(nbands, band_comm, parstride_bands)

        # Construct grid descriptor for coarse grids for wave functions:
        gd = self.create_grid_descriptor(N_c, cell_cv, pbc_c, domain_comm,
                                         parsize_domain)

        if hasattr(self, 'time') or mode.force_complex_dtype or not collinear:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        wfs_kwargs = dict(gd=gd,
                          nvalence=nvalence,
                          setups=setups,
                          bd=bd,
                          dtype=dtype,
                          world=self.world,
                          kd=kd,
                          kptband_comm=kptband_comm,
                          timer=self.timer)

        if self.parallel['sl_auto']:
            # Choose scalapack parallelization automatically

            for key, val in self.parallel.items():
                if (key.startswith('sl_') and key != 'sl_auto'
                        and val is not None):
                    raise ValueError("Cannot use 'sl_auto' together "
                                     "with '%s'" % key)

            max_scalapack_cpus = bd.comm.size * gd.comm.size
            sl_default = suggest_blocking(nbands, max_scalapack_cpus)
        else:
            sl_default = self.parallel['sl_default']

        if mode.name == 'lcao':
            assert collinear
            # Layouts used for general diagonalizer
            sl_lcao = self.parallel['sl_lcao']
            if sl_lcao is None:
                sl_lcao = sl_default

            elpasolver = None
            if self.parallel['use_elpa']:
                elpasolver = self.parallel['elpasolver']
            lcaoksl = get_KohnSham_layouts(sl_lcao,
                                           'lcao',
                                           gd,
                                           bd,
                                           domainband_comm,
                                           dtype,
                                           nao=nao,
                                           timer=self.timer,
                                           elpasolver=elpasolver)

            self.wfs = mode(lcaoksl, **wfs_kwargs)

        elif mode.name == 'fd' or mode.name == 'pw':
            # Use (at most) all available LCAO for initialization
            lcaonbands = min(nbands, nao)

            try:
                lcaobd = BandDescriptor(lcaonbands, band_comm, parstride_bands)
            except RuntimeError:
                initksl = None
            else:
                # Layouts used for general diagonalizer
                # (LCAO initialization)
                sl_lcao = self.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = sl_default
                initksl = get_KohnSham_layouts(sl_lcao,
                                               'lcao',
                                               gd,
                                               lcaobd,
                                               domainband_comm,
                                               dtype,
                                               nao=nao,
                                               timer=self.timer)

            reuse_wfs_method = par.experimental.get('reuse_wfs_method', 'paw')
            sl = (domainband_comm, ) + (self.parallel['sl_diagonalize']
                                        or sl_default or (1, 1, None))
            self.wfs = mode(sl,
                            initksl,
                            reuse_wfs_method=reuse_wfs_method,
                            collinear=collinear,
                            **wfs_kwargs)
        else:
            self.wfs = mode(self, collinear=collinear, **wfs_kwargs)

        self.log(self.wfs, '\n')

    def dry_run(self):
        # Can be overridden like in gpaw.atom.atompaw
        print_cell(self.wfs.gd, self.atoms.pbc, self.log)
        print_positions(self.atoms, self.log, self.density.magmom_av)
        self.log.fd.flush()

        # Write timing info now before the interpreter shuts down:
        self.__del__()

        # Disable timing output during shut-down:
        del self.timer

        raise SystemExit
예제 #13
0
class PAW(PAWTextOutput):
    """This is the main calculation object for doing a PAW calculation."""
    def __init__(self,
                 filename=None,
                 timer=None,
                 read_projections=True,
                 **kwargs):
        """ASE-calculator interface.

        The following parameters can be used: nbands, xc, kpts,
        spinpol, gpts, h, charge, symmetry, width, mixer,
        hund, lmax, fixdensity, convergence, txt, parallel,
        communicator, dtype, softgauss and stencils.

        If you don't specify any parameters, you will get:

        Defaults: neutrally charged, LDA, gamma-point calculation, a
        reasonable grid-spacing, zero Kelvin electronic temperature,
        and the number of bands will be equal to the number of atomic
        orbitals present in the setups. Only occupied bands are used
        in the convergence decision. The calculation will be
        spin-polarized if and only if one or more of the atoms have
        non-zero magnetic moments. Text output will be written to
        standard output.

        For a non-gamma point calculation, the electronic temperature
        will be 0.1 eV (energies are extrapolated to zero Kelvin) and
        all symmetries will be used to reduce the number of
        **k**-points."""

        PAWTextOutput.__init__(self)
        self.grid_descriptor_class = GridDescriptor
        self.input_parameters = InputParameters()

        if timer is None:
            self.timer = Timer()
        else:
            self.timer = timer

        self.scf = None
        self.forces = ForceCalculator(self.timer)
        self.stress_vv = None
        self.dipole_v = None
        self.magmom_av = None
        self.wfs = EmptyWaveFunctions()
        self.occupations = None
        self.density = None
        self.hamiltonian = None
        self.atoms = None
        self.iter = 0

        self.initialized = False
        self.nbands_parallelization_adjustment = None  # Somehow avoid this?

        # Possibly read GPAW keyword arguments from file:
        if filename is not None and filename.endswith('.gkw'):
            from gpaw.utilities.kwargs import load
            parameters = load(filename)
            parameters.update(kwargs)
            kwargs = parameters
            filename = None  # XXX

        if filename is not None:
            comm = kwargs.get('communicator', mpi.world)
            reader = gpaw.io.open(filename, 'r', comm)
            self.atoms = gpaw.io.read_atoms(reader)
            par = self.input_parameters
            par.read(reader)

        # _changed_keywords contains those keywords that have been
        # changed by set() since last time initialize() was called.
        self._changed_keywords = set()
        self.set(**kwargs)
        # Here in the beginning, effectively every keyword has been changed.
        self._changed_keywords.update(self.input_parameters)

        if filename is not None:
            # Setups are not saved in the file if the setups were not loaded
            # *from* files in the first place
            if par.setups is None:
                if par.idiotproof:
                    raise RuntimeError('Setups not specified in file. Use '
                                       'idiotproof=False to proceed anyway.')
                else:
                    par.setups = {None: 'paw'}
            if par.basis is None:
                if par.idiotproof:
                    raise RuntimeError('Basis not specified in file. Use '
                                       'idiotproof=False to proceed anyway.')
                else:
                    par.basis = {}

            self.initialize()
            self.read(reader, read_projections)
            if self.hamiltonian.xc.type == 'GLLB':
                self.occupations.calculate(self.wfs)

            self.print_cell_and_parameters()

        self.observers = []

    def read(self, reader, read_projections=True):
        gpaw.io.read(self, reader, read_projections)

    def set(self, **kwargs):
        """Change parameters for calculator.

        Examples::

            calc.set(xc='PBE')
            calc.set(nbands=20, kpts=(4, 1, 1))
        """
        p = self.input_parameters
        self._changed_keywords.update(kwargs)

        if (kwargs.get('h') is not None) and (kwargs.get('gpts') is not None):
            raise TypeError("""You can't use both "gpts" and "h"!""")
        if 'h' in kwargs:
            p['gpts'] = None
        if 'gpts' in kwargs:
            p['h'] = None

        # Special treatment for dictionary parameters:
        for name in ['convergence', 'parallel']:
            if kwargs.get(name) is not None:
                tmp = p[name]
                for key in kwargs[name]:
                    if key not in tmp:
                        raise KeyError('Unknown subparameter "%s" in '
                                       'dictionary parameter "%s"' %
                                       (key, name))
                tmp.update(kwargs[name])
                kwargs[name] = tmp

        self.initialized = False

        for key in kwargs:
            if key == 'basis' and str(p['mode']) == 'fd':  # umm what about PW?
                # The second criterion seems buggy, will not touch it.  -Ask
                continue

            if key == 'eigensolver':
                self.wfs.set_eigensolver(None)

            if key in [
                    'fixmom', 'mixer', 'verbose', 'txt', 'hund', 'random',
                    'eigensolver', 'idiotproof', 'notify'
            ]:
                continue

            if key in ['convergence', 'fixdensity', 'maxiter']:
                self.scf = None
                continue

            # More drastic changes:
            self.scf = None
            self.wfs.set_orthonormalized(False)
            if key in [
                    'lmax', 'width', 'stencils', 'external', 'xc',
                    'poissonsolver'
            ]:
                self.hamiltonian = None
                self.occupations = None
            elif key in ['occupations']:
                self.occupations = None
            elif key in ['charge']:
                self.hamiltonian = None
                self.density = None
                self.wfs = EmptyWaveFunctions()
                self.occupations = None
            elif key in ['kpts', 'nbands', 'usesymm', 'symmetry']:
                self.wfs = EmptyWaveFunctions()
                self.occupations = None
            elif key in [
                    'h', 'gpts', 'setups', 'spinpol', 'realspace', 'parallel',
                    'communicator', 'dtype', 'mode'
            ]:
                self.density = None
                self.occupations = None
                self.hamiltonian = None
                self.wfs = EmptyWaveFunctions()
            elif key in ['basis']:
                self.wfs = EmptyWaveFunctions()
            elif key in ['parsize', 'parsize_bands', 'parstride_bands']:
                name = {
                    'parsize': 'domain',
                    'parsize_bands': 'band',
                    'parstride_bands': 'stridebands'
                }[key]
                raise DeprecationWarning(
                    'Keyword argument has been moved ' +
                    "to the 'parallel' dictionary keyword under '%s'." % name)
            else:
                raise TypeError("Unknown keyword argument: '%s'" % key)

        p.update(kwargs)

    def calculate(self,
                  atoms=None,
                  converge=False,
                  force_call_to_set_positions=False):
        """Update PAW calculaton if needed.

        Returns True/False whether a calculation was performed or not."""

        self.timer.start('Initialization')
        if atoms is None:
            atoms = self.atoms

        if self.atoms is None:
            # First time:
            self.initialize(atoms)
            self.set_positions(atoms)
        elif (len(atoms) != len(self.atoms)
              or (atoms.get_atomic_numbers() !=
                  self.atoms.get_atomic_numbers()).any()
              or (atoms.get_initial_magnetic_moments() !=
                  self.atoms.get_initial_magnetic_moments()).any()
              or (atoms.get_cell() != self.atoms.get_cell()).any()
              or (atoms.get_pbc() != self.atoms.get_pbc()).any()):
            # Drastic changes:
            self.wfs = EmptyWaveFunctions()
            self.occupations = None
            self.density = None
            self.hamiltonian = None
            self.scf = None
            self.initialize(atoms)
            self.set_positions(atoms)
        elif not self.initialized:
            self.initialize(atoms)
            self.set_positions(atoms)
        elif (atoms.get_positions() != self.atoms.get_positions()).any():
            self.density.reset()
            self.set_positions(atoms)
        elif not self.scf.converged:
            # Do not call scf.check_convergence() here as it overwrites
            # scf.converged, and setting scf.converged is the only
            # 'practical' way for a user to force the calculation to proceed
            self.set_positions(atoms)
        elif force_call_to_set_positions:
            self.set_positions(atoms)

        self.timer.stop('Initialization')

        if self.scf.converged:
            return False
        else:
            self.print_cell_and_parameters()

        self.timer.start('SCF-cycle')
        for iter in self.scf.run(self.wfs, self.hamiltonian, self.density,
                                 self.occupations, self.forces):
            self.iter = iter
            self.call_observers(iter)
            self.print_iteration(iter)
        self.timer.stop('SCF-cycle')

        if self.scf.converged:
            self.call_observers(iter, final=True)
            self.print_converged(iter)
        elif converge:
            self.txt.write(oops)
            raise KohnShamConvergenceError(
                'Did not converge!  See text output for help.')

        return True

    def initialize_positions(self, atoms=None):
        """Update the positions of the atoms."""
        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        self.check_atoms()

        spos_ac = atoms.get_scaled_positions() % 1.0

        self.wfs.set_positions(spos_ac)
        self.density.set_positions(spos_ac, self.wfs.rank_a)
        self.hamiltonian.set_positions(spos_ac, self.wfs.rank_a)

        return spos_ac

    def set_positions(self, atoms=None):
        """Update the positions of the atoms and initialize wave functions."""
        spos_ac = self.initialize_positions(atoms)
        self.wfs.initialize(self.density, self.hamiltonian, spos_ac)
        self.wfs.eigensolver.reset()
        self.scf.reset()
        self.forces.reset()
        self.stress_vv = None
        self.dipole_v = None
        self.magmom_av = None
        self.print_positions()

    def initialize(self, atoms=None):
        """Inexpensive initialization."""

        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        par = self.input_parameters

        world = par.communicator
        if world is None:
            world = mpi.world
        elif hasattr(world, 'new_communicator'):
            # Check for whether object has correct type already
            #
            # Using isinstance() is complicated because of all the
            # combinations, serial/parallel/debug...
            pass
        else:
            # world should be a list of ranks:
            world = mpi.world.new_communicator(np.asarray(world))
        self.wfs.world = world

        if 'txt' in self._changed_keywords:
            self.set_txt(par.txt)
        self.verbose = par.verbose

        natoms = len(atoms)

        cell_cv = atoms.get_cell() / Bohr
        pbc_c = atoms.get_pbc()
        Z_a = atoms.get_atomic_numbers()
        magmom_av = atoms.get_initial_magnetic_moments()

        self.check_atoms()

        # Generate new xc functional only when it is reset by set
        # XXX sounds like this should use the _changed_keywords dictionary.
        if self.hamiltonian is None or self.hamiltonian.xc is None:
            if isinstance(par.xc, str):
                xc = XC(par.xc)
            else:
                xc = par.xc
        else:
            xc = self.hamiltonian.xc

        mode = par.mode

        if mode == 'fd':
            mode = FD()
        elif mode == 'pw':
            mode = pw.PW()
        elif mode == 'lcao':
            mode = LCAO()
        else:
            assert hasattr(mode, 'name'), str(mode)

        if xc.orbital_dependent and mode.name == 'lcao':
            raise NotImplementedError('LCAO mode does not support '
                                      'orbital-dependent XC functionals.')

        if par.realspace is None:
            realspace = (mode.name != 'pw')
        else:
            realspace = par.realspace
            if mode.name == 'pw':
                assert not realspace

        if par.filter is None and mode.name != 'pw':
            gamma = 1.6
            if par.gpts is not None:
                h = ((np.linalg.inv(cell_cv)**2).sum(0)**-0.5 / par.gpts).max()
            else:
                h = (par.h or 0.2) / Bohr

            def filter(rgd, rcut, f_r, l=0):
                gcut = np.pi / h - 2 / rcut / gamma
                f_r[:] = rgd.filter(f_r, rcut * gamma, gcut, l)
        else:
            filter = par.filter

        setups = Setups(Z_a, par.setups, par.basis, par.lmax, xc, filter,
                        world)

        if magmom_av.ndim == 1:
            collinear = True
            magmom_av, magmom_a = np.zeros((natoms, 3)), magmom_av
            magmom_av[:, 2] = magmom_a
        else:
            collinear = False

        magnetic = magmom_av.any()

        spinpol = par.spinpol
        if par.hund:
            if natoms != 1:
                raise ValueError('hund=True arg only valid for single atoms!')
            spinpol = True
            magmom_av[0] = (0, 0, setups[0].get_hunds_rule_moment(par.charge))

        if spinpol is None:
            spinpol = magnetic
        elif magnetic and not spinpol:
            raise ValueError('Non-zero initial magnetic moment for a ' +
                             'spin-paired calculation!')

        if collinear:
            nspins = 1 + int(spinpol)
            ncomp = 1
        else:
            nspins = 1
            ncomp = 2

        if par.usesymm != 'default':
            warnings.warn('Use "symmetry" keyword instead of ' +
                          '"usesymm" keyword')
            par.symmetry = usesymm2symmetry(par.usesymm)

        symm = par.symmetry
        if symm == 'off':
            symm = {'point_group': False, 'time_reversal': False}

        bzkpts_kc = kpts2ndarray(par.kpts, self.atoms)
        kd = KPointDescriptor(bzkpts_kc, nspins, collinear)
        m_av = magmom_av.round(decimals=3)  # round off
        id_a = zip(setups.id_a, *m_av.T)
        symmetry = Symmetry(id_a, cell_cv, atoms.pbc, **symm)
        kd.set_symmetry(atoms, symmetry, comm=world)
        setups.set_symmetry(symmetry)

        if par.gpts is not None:
            N_c = np.array(par.gpts)
        else:
            h = par.h
            if h is not None:
                h /= Bohr
            N_c = get_number_of_grid_points(cell_cv, h, mode, realspace,
                                            kd.symmetry)

        symmetry.check_grid(N_c)

        width = par.width
        if width is None:
            if pbc_c.any():
                width = 0.1  # eV
            else:
                width = 0.0
        else:
            assert par.occupations is None

        if hasattr(self, 'time') or par.dtype == complex:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        nao = setups.nao
        nvalence = setups.nvalence - par.charge
        M_v = magmom_av.sum(0)
        M = np.dot(M_v, M_v)**0.5

        nbands = par.nbands

        orbital_free = any(setup.orbital_free for setup in setups)
        if orbital_free:
            nbands = 1

        if isinstance(nbands, basestring):
            if nbands[-1] == '%':
                basebands = int(nvalence + M + 0.5) // 2
                nbands = int((float(nbands[:-1]) / 100) * basebands)
            else:
                raise ValueError('Integer Expected: Only use a string '
                                 'if giving a percentage of occupied bands')

        if nbands is None:
            nbands = 0
            for setup in setups:
                nbands_from_atom = setup.get_default_nbands()

                # Any obscure setup errors?
                if nbands_from_atom < -(-setup.Nv // 2):
                    raise ValueError('Bad setup: This setup requests %d'
                                     ' bands but has %d electrons.' %
                                     (nbands_from_atom, setup.Nv))
                nbands += nbands_from_atom
            nbands = min(nao, nbands)
        elif nbands > nao and mode.name == 'lcao':
            raise ValueError('Too many bands for LCAO calculation: '
                             '%d bands and only %d atomic orbitals!' %
                             (nbands, nao))

        if nvalence < 0:
            raise ValueError(
                'Charge %f is not possible - not enough valence electrons' %
                par.charge)

        if nbands <= 0:
            nbands = int(nvalence + M + 0.5) // 2 + (-nbands)

        if nvalence > 2 * nbands and not orbital_free:
            raise ValueError('Too few bands!  Electrons: %f, bands: %d' %
                             (nvalence, nbands))

        nbands *= ncomp

        if par.width is not None:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width).')
        if par.fixmom:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width, fixmagmom=True).')

        if self.occupations is None:
            if par.occupations is None:
                # Create object for occupation numbers:
                if orbital_free:
                    width = 0.0  # even for PBC
                    self.occupations = occupations.TFOccupations(
                        width, par.fixmom)
                else:
                    self.occupations = occupations.FermiDirac(
                        width, par.fixmom)
            else:
                self.occupations = par.occupations

            # If occupation numbers are changed, and we have wave functions,
            # recalculate the occupation numbers
            if self.wfs is not None and not isinstance(self.wfs,
                                                       EmptyWaveFunctions):
                self.occupations.calculate(self.wfs)

        self.occupations.magmom = M_v[2]

        cc = par.convergence

        if mode.name == 'lcao':
            niter_fixdensity = 0
        else:
            niter_fixdensity = None

        if self.scf is None:
            force_crit = cc['forces']
            if force_crit is not None:
                force_crit /= Hartree / Bohr
            self.scf = SCFLoop(cc['eigenstates'] / Hartree**2 * nvalence,
                               cc['energy'] / Hartree * max(nvalence, 1),
                               cc['density'] * nvalence, par.maxiter,
                               par.fixdensity, niter_fixdensity, force_crit)

        parsize_kpt = par.parallel['kpt']
        parsize_domain = par.parallel['domain']
        parsize_bands = par.parallel['band']

        if not realspace:
            pbc_c = np.ones(3, bool)

        if not self.wfs:
            if parsize_domain == 'domain only':  # XXX this was silly!
                parsize_domain = world.size

            parallelization = mpi.Parallelization(world, nspins * kd.nibzkpts)
            ndomains = None
            if parsize_domain is not None:
                ndomains = np.prod(parsize_domain)
            if mode.name == 'pw':
                if ndomains > 1:
                    raise ValueError('Planewave mode does not support '
                                     'domain decomposition.')
                ndomains = 1
            parallelization.set(kpt=parsize_kpt,
                                domain=ndomains,
                                band=parsize_bands)
            comms = parallelization.build_communicators()
            domain_comm = comms['d']
            kpt_comm = comms['k']
            band_comm = comms['b']
            kptband_comm = comms['D']
            domainband_comm = comms['K']

            self.comms = comms
            kd.set_communicator(kpt_comm)

            parstride_bands = par.parallel['stridebands']

            # Unfortunately we need to remember that we adjusted the
            # number of bands so we can print a warning if it differs
            # from the number specified by the user.  (The number can
            # be inferred from the input parameters, but it's tricky
            # because we allow negative numbers)
            self.nbands_parallelization_adjustment = -nbands % band_comm.size
            nbands += self.nbands_parallelization_adjustment

            # I would like to give the following error message, but apparently
            # there are cases, e.g. gpaw/test/gw_ppa.py, which involve
            # nbands > nao and are supposed to work that way.
            #if nbands > nao:
            #    raise ValueError('Number of bands %d adjusted for band '
            #                     'parallelization %d exceeds number of atomic '
            #                     'orbitals %d.  This problem can be fixed '
            #                     'by reducing the number of bands a bit.'
            #                     % (nbands, band_comm.size, nao))
            bd = BandDescriptor(nbands, band_comm, parstride_bands)

            if (self.density is not None
                    and self.density.gd.comm.size != domain_comm.size):
                # Domain decomposition has changed, so we need to
                # reinitialize density and hamiltonian:
                if par.fixdensity:
                    raise RuntimeError(
                        'Density reinitialization conflict ' +
                        'with "fixdensity" - specify domain decomposition.')
                self.density = None
                self.hamiltonian = None

            # Construct grid descriptor for coarse grids for wave functions:
            gd = self.grid_descriptor_class(N_c, cell_cv, pbc_c, domain_comm,
                                            parsize_domain)

            # do k-point analysis here? XXX
            args = (gd, nvalence, setups, bd, dtype, world, kd, kptband_comm,
                    self.timer)

            if par.parallel['sl_auto']:
                # Choose scalapack parallelization automatically

                for key, val in par.parallel.items():
                    if (key.startswith('sl_') and key != 'sl_auto'
                            and val is not None):
                        raise ValueError("Cannot use 'sl_auto' together "
                                         "with '%s'" % key)
                max_scalapack_cpus = bd.comm.size * gd.comm.size
                nprow = max_scalapack_cpus
                npcol = 1

                # Get a sort of reasonable number of columns/rows
                while npcol < nprow and nprow % 2 == 0:
                    npcol *= 2
                    nprow //= 2
                assert npcol * nprow == max_scalapack_cpus

                # ScaLAPACK creates trouble if there aren't at least a few
                # whole blocks; choose block size so there will always be
                # several blocks.  This will crash for small test systems,
                # but so will ScaLAPACK in any case
                blocksize = min(-(-nbands // 4), 64)
                sl_default = (nprow, npcol, blocksize)
            else:
                sl_default = par.parallel['sl_default']

            if mode.name == 'lcao':
                # Layouts used for general diagonalizer
                sl_lcao = par.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = sl_default
                lcaoksl = get_KohnSham_layouts(sl_lcao,
                                               'lcao',
                                               gd,
                                               bd,
                                               domainband_comm,
                                               dtype,
                                               nao=nao,
                                               timer=self.timer)

                self.wfs = mode(collinear, lcaoksl, *args)

            elif mode.name == 'fd' or mode.name == 'pw':
                # buffer_size keyword only relevant for fdpw
                buffer_size = par.parallel['buffer_size']
                # Layouts used for diagonalizer
                sl_diagonalize = par.parallel['sl_diagonalize']
                if sl_diagonalize is None:
                    sl_diagonalize = sl_default
                diagksl = get_KohnSham_layouts(
                    sl_diagonalize,
                    'fd',  # XXX
                    # choice of key 'fd' not so nice
                    gd,
                    bd,
                    domainband_comm,
                    dtype,
                    buffer_size=buffer_size,
                    timer=self.timer)

                # Layouts used for orthonormalizer
                sl_inverse_cholesky = par.parallel['sl_inverse_cholesky']
                if sl_inverse_cholesky is None:
                    sl_inverse_cholesky = sl_default
                if sl_inverse_cholesky != sl_diagonalize:
                    message = 'sl_inverse_cholesky != sl_diagonalize ' \
                        'is not implemented.'
                    raise NotImplementedError(message)
                orthoksl = get_KohnSham_layouts(sl_inverse_cholesky,
                                                'fd',
                                                gd,
                                                bd,
                                                domainband_comm,
                                                dtype,
                                                buffer_size=buffer_size,
                                                timer=self.timer)

                # Use (at most) all available LCAO for initialization
                lcaonbands = min(nbands, nao)

                try:
                    lcaobd = BandDescriptor(lcaonbands, band_comm,
                                            parstride_bands)
                except RuntimeError:
                    initksl = None
                else:
                    # Layouts used for general diagonalizer
                    # (LCAO initialization)
                    sl_lcao = par.parallel['sl_lcao']
                    if sl_lcao is None:
                        sl_lcao = sl_default
                    initksl = get_KohnSham_layouts(sl_lcao,
                                                   'lcao',
                                                   gd,
                                                   lcaobd,
                                                   domainband_comm,
                                                   dtype,
                                                   nao=nao,
                                                   timer=self.timer)

                if hasattr(self, 'time'):
                    assert mode.name == 'fd'
                    from gpaw.tddft import TimeDependentWaveFunctions
                    self.wfs = TimeDependentWaveFunctions(
                        par.stencils[0], diagksl, orthoksl, initksl, gd,
                        nvalence, setups, bd, world, kd, kptband_comm,
                        self.timer)
                elif mode.name == 'fd':
                    self.wfs = mode(par.stencils[0], diagksl, orthoksl,
                                    initksl, *args)
                else:
                    assert mode.name == 'pw'
                    self.wfs = mode(diagksl, orthoksl, initksl, *args)
            else:
                self.wfs = mode(self, *args)
        else:
            self.wfs.set_setups(setups)

        if not self.wfs.eigensolver:
            # Number of bands to converge:
            nbands_converge = cc['bands']
            if nbands_converge == 'all':
                nbands_converge = nbands
            elif nbands_converge != 'occupied':
                assert isinstance(nbands_converge, int)
                if nbands_converge < 0:
                    nbands_converge += nbands
            eigensolver = get_eigensolver(par.eigensolver, mode,
                                          par.convergence)
            eigensolver.nbands_converge = nbands_converge
            # XXX Eigensolver class doesn't define an nbands_converge property

            if isinstance(xc, SIC):
                eigensolver.blocksize = 1
            self.wfs.set_eigensolver(eigensolver)

        if self.density is None:
            gd = self.wfs.gd
            if par.stencils[1] != 9:
                # Construct grid descriptor for fine grids for densities
                # and potentials:
                finegd = gd.refine()
            else:
                # Special case (use only coarse grid):
                finegd = gd

            if realspace:
                self.density = RealSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear, par.stencils[1])
            else:
                self.density = pw.ReciprocalSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear)

        self.density.initialize(setups, self.timer, magmom_av, par.hund)
        self.density.set_mixer(par.mixer)

        if self.hamiltonian is None:
            gd, finegd = self.density.gd, self.density.finegd
            if realspace:
                self.hamiltonian = RealSpaceHamiltonian(
                    gd, finegd, nspins, setups, self.timer, xc, world,
                    self.wfs.kptband_comm, par.external, collinear,
                    par.poissonsolver, par.stencils[1])
            else:
                self.hamiltonian = pw.ReciprocalSpaceHamiltonian(
                    gd, finegd, self.density.pd2, self.density.pd3, nspins,
                    setups, self.timer, xc, world, self.wfs.kptband_comm,
                    par.external, collinear)

        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)

        self.text()
        self.print_memory_estimate(self.txt, maxdepth=memory_estimate_depth)
        self.txt.flush()

        self.timer.print_info(self)

        if dry_run:
            self.dry_run()

        if realspace and \
                self.hamiltonian.poisson.get_description() == 'FDTD+TDDFT':
            self.hamiltonian.poisson.set_density(self.density)
            self.hamiltonian.poisson.print_messages(self.text)
            self.txt.flush()

        self.initialized = True
        self._changed_keywords.clear()

    def dry_run(self):
        # Can be overridden like in gpaw.atom.atompaw
        self.print_cell_and_parameters()
        self.print_positions()
        self.txt.flush()
        raise SystemExit

    def linearize_to_xc(self, newxc):
        """Linearize Hamiltonian to difference XC functional.
        
        Used in real time TDDFT to perform calculations with various kernels.
        """
        if isinstance(newxc, str):
            newxc = XC(newxc)
        self.txt.write('Linearizing xc-hamiltonian to ' + str(newxc))
        newxc.initialize(self.density, self.hamiltonian, self.wfs,
                         self.occupations)
        self.hamiltonian.linearize_to_xc(newxc, self.density)

    def restore_state(self):
        """After restart, calculate fine density and poisson solution.

        These are not initialized by default.
        TODO: Is this really the most efficient way?
        """
        spos_ac = self.atoms.get_scaled_positions() % 1.0
        self.density.set_positions(spos_ac, self.wfs.rank_a)
        self.density.interpolate_pseudo_density()
        self.density.calculate_pseudo_charge()
        self.hamiltonian.set_positions(spos_ac, self.wfs.rank_a)
        self.hamiltonian.update(self.density)

    def attach(self, function, n=1, *args, **kwargs):
        """Register observer function.

        Call *function* using *args* and
        *kwargs* as arguments.
        
        If *n* is positive, then
        *function* will be called every *n* iterations + the
        final iteration if it would not be otherwise
        
        If *n* is negative, then *function* will only be
        called on iteration *abs(n)*.
        
        If *n* is 0, then *function* will only be called
        on convergence"""

        try:
            slf = function.im_self
        except AttributeError:
            pass
        else:
            if slf is self:
                # function is a bound method of self.  Store the name
                # of the method and avoid circular reference:
                function = function.im_func.func_name

        self.observers.append((function, n, args, kwargs))

    def call_observers(self, iter, final=False):
        """Call all registered callback functions."""
        for function, n, args, kwargs in self.observers:
            call = False
            # Call every n iterations, including the last
            if n > 0:
                if ((iter % n) == 0) != final:
                    call = True
            # Call only on iteration n
            elif n < 0 and not final:
                if iter == abs(n):
                    call = True
            # Call only on convergence
            elif n == 0 and final:
                call = True
            if call:
                if isinstance(function, str):
                    function = getattr(self, function)
                function(*args, **kwargs)

    def get_reference_energy(self):
        return self.wfs.setups.Eref * Hartree

    def write(self, filename, mode='', cmr_params={}, **kwargs):
        """Write state to file.

        use mode='all' to write the wave functions.  cmr_params is a
        dictionary that allows you to specify parameters for CMR
        (Computational Materials Repository).
        """

        self.timer.start('IO')
        gpaw.io.write(self, filename, mode, cmr_params=cmr_params, **kwargs)
        self.timer.stop('IO')

    def get_myu(self, k, s):
        """Return my u corresponding to a certain kpoint and spin - or None"""
        # very slow, but we are sure that we have it
        for u in range(len(self.wfs.kpt_u)):
            if self.wfs.kpt_u[u].k == k and self.wfs.kpt_u[u].s == s:
                return u
        return None

    def get_homo_lumo(self):
        """Return H**O and LUMO eigenvalues."""
        return self.occupations.get_homo_lumo(self.wfs) * Hartree

    def estimate_memory(self, mem):
        """Estimate memory use of this object."""
        for name, obj in [
            ('Density', self.density),
            ('Hamiltonian', self.hamiltonian),
            ('Wavefunctions', self.wfs),
        ]:
            obj.estimate_memory(mem.subnode(name))

    def print_memory_estimate(self, txt=None, maxdepth=-1):
        """Print estimated memory usage for PAW object and components.

        maxdepth is the maximum nesting level of displayed components.

        The PAW object must be initialize()'d, but needs not have large
        arrays allocated."""
        # NOTE.  This should work with --dry-run=N
        #
        # However, the initial overhead estimate is wrong if this method
        # is called within a real mpirun/gpaw-python context.
        if txt is None:
            txt = self.txt
        txt.write('Memory estimate\n')
        txt.write('---------------\n')

        mem_init = maxrss()  # initial overhead includes part of Hamiltonian!
        txt.write('Process memory now: %.2f MiB\n' % (mem_init / 1024.0**2))

        mem = MemNode('Calculator', 0)
        try:
            self.estimate_memory(mem)
        except AttributeError as m:
            txt.write('Attribute error: %r' % m)
            txt.write('Some object probably lacks estimate_memory() method')
            txt.write('Memory breakdown may be incomplete')
        mem.calculate_size()
        mem.write(txt, maxdepth=maxdepth)

    def converge_wave_functions(self):
        """Converge the wave-functions if not present."""

        if not self.wfs or not self.scf:
            self.initialize()
        else:
            self.wfs.initialize_wave_functions_from_restart_file()
            spos_ac = self.atoms.get_scaled_positions() % 1.0
            self.wfs.set_positions(spos_ac)

        no_wave_functions = (self.wfs.kpt_u[0].psit_nG is None)
        converged = self.scf.check_convergence(self.density,
                                               self.wfs.eigensolver, self.wfs,
                                               self.hamiltonian, self.forces)
        if no_wave_functions or not converged:
            self.wfs.eigensolver.error = np.inf
            self.scf.converged = False

            # is the density ok ?
            error = self.density.mixer.get_charge_sloshing()
            criterion = (self.input_parameters['convergence']['density'] *
                         self.wfs.nvalence)
            if error < criterion and not self.hamiltonian.xc.orbital_dependent:
                self.scf.fix_density()

            self.calculate()

    def diagonalize_full_hamiltonian(self,
                                     nbands=None,
                                     scalapack=None,
                                     expert=False):
        self.wfs.diagonalize_full_hamiltonian(self.hamiltonian, self.atoms,
                                              self.occupations, self.txt,
                                              nbands, scalapack, expert)

    def check_atoms(self):
        """Check that atoms objects are identical on all processors."""
        if not mpi.compare_atoms(self.atoms, comm=self.wfs.world):
            raise RuntimeError('Atoms objects on different processors ' +
                               'are not identical!')
예제 #14
0
class ResonantRaman(Vibrations):
    """Class for calculating vibrational modes and
    resonant Raman intensities using finite difference.

    atoms:
        Atoms object
    Excitations:
        Class to calculate the excitations. The class object is
        initialized as::

            Excitations(atoms.get_calculator())

        or by reading form a file as::

            Excitations('filename', **exkwargs)

        The file is written by calling the method
        Excitations.write('filename').

        Excitations should work like a list of ex obejects, where:
            ex.get_dipole_me(form='v'):
                gives the dipole matrix element in |e| * Angstrom
            ex.energy:
                is the transition energy in Hartrees
    """
    def __init__(
        self,
        atoms,
        Excitations,
        indices=None,
        gsname='rraman',  # name for ground state calculations
        exname=None,  # name for excited state calculations
        delta=0.01,
        nfree=2,
        directions=None,
        approximation='Profeta',
        observation={'geometry': '-Z(XX)Z'},
        exkwargs={},  # kwargs to be passed to Excitations
        exext='.ex.gz',  # extension for Excitation names
        txt='-',
        verbose=False,
    ):
        assert (nfree == 2)
        Vibrations.__init__(self, atoms, indices, gsname, delta, nfree)
        self.name = gsname + '-d%.3f' % delta
        if exname is None:
            exname = gsname
        self.exname = exname + '-d%.3f' % delta
        self.exext = exext

        if directions is None:
            self.directions = np.array([0, 1, 2])
        else:
            self.directions = np.array(directions)

        self.approximation = approximation
        self.observation = observation
        self.exobj = Excitations
        self.exkwargs = exkwargs

        self.timer = Timer()
        self.txt = convert_string_to_fd(txt)

        self.verbose = verbose

    @staticmethod
    def m2(z):
        return (z * z.conj()).real

    def log(self, message, pre='# ', end='\n'):
        if self.verbose:
            self.txt.write(pre + message + end)
            self.txt.flush()

    def calculate(self, filename, fd):
        """Call ground and excited state calculation"""
        self.timer.start('Ground state')
        forces = self.atoms.get_forces()
        if rank == 0:
            pickle.dump(forces, fd, protocol=2)
            fd.close()
        self.timer.stop('Ground state')

        self.timer.start('Excitations')
        basename, _ = os.path.splitext(filename)
        excitations = self.exobj(self.atoms.get_calculator(), **self.exkwargs)
        excitations.write(basename + self.exext)
        self.timer.stop('Excitations')

    def read_excitations(self):
        self.timer.start('read excitations')
        self.timer.start('really read')
        self.log('reading ' + self.exname + '.eq' + self.exext)
        ex0_object = self.exobj(self.exname + '.eq' + self.exext,
                                **self.exkwargs)
        self.timer.stop('really read')
        self.timer.start('index')
        matching = frozenset(ex0_object)
        self.timer.stop('index')

        def append(lst, exname, matching):
            self.timer.start('really read')
            self.log('reading ' + exname, end=' ')
            exo = self.exobj(exname, **self.exkwargs)
            lst.append(exo)
            self.timer.stop('really read')
            self.timer.start('index')
            matching = matching.intersection(exo)
            self.log('len={0}, matching={1}'.format(len(exo), len(matching)),
                     pre='')
            self.timer.stop('index')
            return matching

        exm_object_list = []
        exp_object_list = []
        for a in self.indices:
            for i in 'xyz':
                name = '%s.%d%s' % (self.exname, a, i)
                matching = append(exm_object_list, name + '-' + self.exext,
                                  matching)
                matching = append(exp_object_list, name + '+' + self.exext,
                                  matching)
        self.ndof = 3 * len(self.indices)
        self.nex = len(matching)
        self.timer.stop('read excitations')

        self.timer.start('select')

        def select(exl, matching):
            mlst = [ex for ex in exl if ex in matching]
            assert (len(mlst) == len(matching))
            return mlst

        ex0 = select(ex0_object, matching)
        exm = []
        exp = []
        r = 0
        for a in self.indices:
            for i in 'xyz':
                exm.append(select(exm_object_list[r], matching))
                exp.append(select(exp_object_list[r], matching))
                r += 1
        self.timer.stop('select')

        self.timer.start('me and energy')

        eu = units.Hartree
        self.ex0E_p = np.array([ex.energy * eu for ex in ex0])
        self.ex0m_pc = np.array([ex.get_dipole_me(form='v') for ex in ex0])
        exmE_rp = []
        expE_rp = []
        exF_rp = []
        exmm_rpc = []
        expm_rpc = []
        r = 0
        for a in self.indices:
            for i in 'xyz':
                exmE_rp.append([em.energy for em in exm[r]])
                expE_rp.append([ep.energy for ep in exp[r]])
                exF_rp.append([(ep.energy - em.energy)
                               for ep, em in zip(exp[r], exm[r])])
                exmm_rpc.append([ex.get_dipole_me(form='v') for ex in exm[r]])
                expm_rpc.append([ex.get_dipole_me(form='v') for ex in exp[r]])
                r += 1
        self.exmE_rp = np.array(exmE_rp) * eu
        self.expE_rp = np.array(expE_rp) * eu
        self.exF_rp = np.array(exF_rp) * eu / 2 / self.delta
        self.exmm_rpc = np.array(exmm_rpc)
        self.expm_rpc = np.array(expm_rpc)

        self.timer.stop('me and energy')

    def read(self, method='standard', direction='central'):
        """Read data from a pre-performed calculation."""
        if not hasattr(self, 'modes'):
            self.timer.start('read vibrations')
            Vibrations.read(self, method, direction)
            # we now have:
            # self.H     : Hessian matrix
            # self.im    : 1./sqrt(masses)
            # self.modes : Eigenmodes of the mass weighted H
            self.om_r = self.hnu.real  # energies in eV
            self.timer.stop('read vibrations')
        if not hasattr(self, 'ex0E_p'):
            self.read_excitations()

    def get_Huang_Rhys_factors(self, forces_r):
        """Evaluate Huang-Rhys factors derived from forces."""
        self.timer.start('Huang-Rhys')
        assert (len(forces_r.flat) == self.ndof)

        # solve the matrix equation for the equilibrium displacements
        # XXX why are the forces mass weighted ???
        X_r = np.linalg.solve(self.im[:, None] * self.H * self.im,
                              forces_r.flat * self.im)
        d_r = np.dot(self.modes, X_r)

        # Huang-Rhys factors S
        s = 1.e-20 / units.kg / units.C / units._hbar**2  # SI units
        self.timer.stop('Huang-Rhys')
        return s * d_r**2 * self.om_r / 2.

    def get_matrix_element_AlbrechtA(self, omega, gamma=0.1, ml=range(16)):
        """Evaluate Albrecht A term.

        Unit: |e|^2Angstrom^2/eV
        """
        self.read()

        self.timer.start('AlbrechtA')

        if not hasattr(self, 'fco'):
            self.fco = FranckCondonOverlap()

        # excited state forces
        F_pr = self.exF_rp.T

        m_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
        for p, energy in enumerate(self.ex0E_p):
            S_r = self.get_Huang_Rhys_factors(F_pr[p])
            me_cc = np.outer(self.ex0m_pc[p], self.ex0m_pc[p].conj())

            for m in ml:
                self.timer.start('0mm1')
                fco_r = self.fco.direct0mm1(m, S_r)
                self.timer.stop('0mm1')
                self.timer.start('einsum')
                m_rcc += np.einsum(
                    'a,bc->abc',
                    fco_r / (energy + m * self.om_r - omega - 1j * gamma),
                    me_cc)
                m_rcc += np.einsum(
                    'a,bc->abc', fco_r /
                    (energy + (m - 1) * self.om_r + omega + 1j * gamma), me_cc)
                self.timer.stop('einsum')

        self.timer.stop('AlbrechtA')
        return m_rcc

    def get_matrix_element_AlbrechtBC(self,
                                      omega,
                                      gamma=0.1,
                                      ml=[1],
                                      term='BC'):
        """Evaluate Albrecht B and/or C term(s)."""
        self.read()

        self.timer.start('AlbrechtBC')

        if not hasattr(self, 'fco'):
            self.fco = FranckCondonOverlap()

        # excited state forces
        F_pr = self.exF_rp.T

        m_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
        for p, energy in enumerate(self.ex0E_p):
            S_r = self.get_Huang_Rhys_factors(F_pr[p])

            for m in ml:
                self.timer.start('Franck-Condon overlaps')
                fc1mm1_r = self.fco.direct(1, m, S_r)
                fc0mm02_r = self.fco.direct(0, m, S_r)
                fc0mm02_r += np.sqrt(2) * self.fco.direct0mm2(m, S_r)
                # XXXXX
                fc1mm1_r[-1] = 1
                fc0mm02_r[-1] = 1
                print(m, fc1mm1_r[-1], fc0mm02_r[-1])
                self.timer.stop('Franck-Condon overlaps')

                self.timer.start('me dervivatives')
                dm_rc = []
                r = 0
                for a in self.indices:
                    for i in 'xyz':
                        dm_rc.append(
                            (self.expm_rpc[r, p] - self.exmm_rpc[r, p]) *
                            self.im[r])
                        print('pm=', self.expm_rpc[r, p], self.exmm_rpc[r, p])
                        r += 1
                dm_rc = np.array(dm_rc) / (2 * self.delta)
                self.timer.stop('me dervivatives')

                self.timer.start('map to modes')
                # print('dm_rc[2], dm_rc[5]', dm_rc[2], dm_rc[5])
                print('dm_rc=', dm_rc)
                dm_rc = np.dot(dm_rc.T, self.modes.T).T
                print('dm_rc[-1][2]', dm_rc[-1][2])
                self.timer.stop('map to modes')

                self.timer.start('multiply')
                # me_cc = np.outer(self.ex0m_pc[p], self.ex0m_pc[p].conj())
                for r in range(self.ndof):
                    if 'B' in term:
                        # XXXX
                        denom = (1. / (energy + m * 0 * self.om_r[r] - omega -
                                       1j * gamma))
                        # ok print('denom=', denom)
                        m_rcc[r] += (
                            np.outer(dm_rc[r], self.ex0m_pc[p].conj()) *
                            fc1mm1_r[r] * denom)
                        if r == 5:
                            print('m_rcc[r]=', m_rcc[r][2, 2])
                        m_rcc[r] += (
                            np.outer(self.ex0m_pc[p], dm_rc[r].conj()) *
                            fc0mm02_r[r] * denom)
                    if 'C' in term:
                        denom = (1. /
                                 (energy +
                                  (m - 1) * self.om_r[r] + omega + 1j * gamma))
                        m_rcc[r] += (
                            np.outer(self.ex0m_pc[p], dm_rc[r].conj()) *
                            fc1mm1_r[r] * denom)
                        m_rcc[r] += (
                            np.outer(dm_rc[r], self.ex0m_pc[p].conj()) *
                            fc0mm02_r[r] * denom)
                self.timer.stop('multiply')
        print('m_rcc[-1]=', m_rcc[-1][2, 2])

        self.timer.start('pre_r')
        with np.errstate(divide='ignore'):
            pre_r = np.where(self.om_r > 0,
                             np.sqrt(units._hbar**2 / 2. / self.om_r), 0)
            # print('BC: pre_r=', pre_r)
        for r, p in enumerate(pre_r):
            m_rcc[r] *= p
        self.timer.stop('pre_r')
        self.timer.stop('AlbrechtBC')
        return m_rcc

    def get_matrix_element_Profeta(self,
                                   omega,
                                   gamma=0.1,
                                   energy_derivative=False):
        """Evaluate Albrecht B+C term in Profeta and Mauri approximation"""
        self.read()

        self.timer.start('amplitudes')

        self.timer.start('init')
        V_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
        pre = 1. / (2 * self.delta)
        self.timer.stop('init')

        def kappa(me_pc, e_p, omega, gamma, form='v'):
            """Kappa tensor after Profeta and Mauri
            PRB 63 (2001) 245415"""
            me_ccp = np.empty((3, 3, len(e_p)), dtype=complex)
            for p, me_c in enumerate(me_pc):
                me_ccp[:, :, p] = np.outer(me_pc[p], me_pc[p].conj())
                # print('kappa: me_ccp=', me_ccp[2,2,0])
                # ok print('kappa: den=', 1./(e_p - omega - 1j * gamma))
            kappa_ccp = (me_ccp / (e_p - omega - 1j * gamma) + me_ccp.conj() /
                         (e_p + omega + 1j * gamma))
            return kappa_ccp.sum(2)

        self.timer.start('kappa')
        r = 0
        for a in self.indices:
            for i in 'xyz':
                if not energy_derivative < 0:
                    V_rcc[r] = pre * self.im[r] * (
                        kappa(self.expm_rpc[r], self.ex0E_p, omega, gamma) -
                        kappa(self.exmm_rpc[r], self.ex0E_p, omega, gamma))
                if energy_derivative:
                    V_rcc[r] += pre * self.im[r] * (
                        kappa(self.ex0m_pc, self.expE_rp[r], omega, gamma) -
                        kappa(self.ex0m_pc, self.exmE_rp[r], omega, gamma))
                r += 1
        self.timer.stop('kappa')
        # print('V_rcc[2], V_rcc[5]=', V_rcc[2,2,2], V_rcc[5,2,2])

        self.timer.stop('amplitudes')

        # map to modes
        self.timer.start('pre_r')
        with np.errstate(divide='ignore'):
            pre_r = np.where(self.om_r > 0,
                             np.sqrt(units._hbar**2 / 2. / self.om_r), 0)
        V_rcc = np.dot(V_rcc.T, self.modes.T).T
        # looks ok        print('self.modes.T[-1]',self.modes.T)
        # looks ok       print('V_rcc[-1]=', V_rcc[-1][2,2])
        # ok       print('Profeta: pre_r=', pre_r)
        for r, p in enumerate(pre_r):
            V_rcc[r] *= p
        self.timer.stop('pre_r')
        return V_rcc

    def get_matrix_element(self, omega, gamma):
        self.read()
        V_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
        if self.approximation.lower() == 'profeta':
            V_rcc += self.get_matrix_element_Profeta(omega, gamma)
        elif self.approximation.lower() == 'placzek':
            V_rcc += self.get_matrix_element_Profeta(omega, gamma, True)
        elif self.approximation.lower() == 'p-p':
            V_rcc += self.get_matrix_element_Profeta(omega, gamma, -1)
        elif self.approximation.lower() == 'albrecht a':
            V_rcc += self.get_matrix_element_AlbrechtA(omega, gamma)
        elif self.approximation.lower() == 'albrecht b':
            raise NotImplementedError('not working')
            V_rcc += self.get_matrix_element_AlbrechtBC(omega, gamma, term='B')
        elif self.approximation.lower() == 'albrecht c':
            raise NotImplementedError('not working')
            V_rcc += self.get_matrix_element_AlbrechtBC(omega, gamma, term='C')
        elif self.approximation.lower() == 'albrecht bc':
            raise NotImplementedError('not working')
            V_rcc += self.get_matrix_element_AlbrechtBC(omega, gamma)
        elif self.approximation.lower() == 'albrecht':
            raise NotImplementedError('not working')
            V_rcc += self.get_matrix_element_AlbrechtA(omega, gamma)
            V_rcc += self.get_matrix_element_AlbrechtBC(omega, gamma)
        elif self.approximation.lower() == 'albrecht+profeta':
            V_rcc += self.get_matrix_element_AlbrechtA(omega, gamma)
            V_rcc += self.get_matrix_element_Profeta(omega, gamma)
        else:
            raise NotImplementedError(
                'Approximation {0} not implemented. '.format(
                    self.approximation) +
                'Please use "Profeta", "Albrecht A/B/C/BC", ' +
                'or "Albrecht".')

        return V_rcc

    def get_intensities(self, omega, gamma=0.1):
        m2 = ResonantRaman.m2
        alpha_rcc = self.get_matrix_element(omega, gamma)
        if not self.observation:  # XXXX remove
            """Simple sum, maybe too simple"""
            return m2(alpha_rcc).sum(axis=1).sum(axis=1)
        # XXX enable when appropraiate
        #        if self.observation['orientation'].lower() != 'random':
        #            raise NotImplementedError('not yet')

        # random orientation of the molecular frame
        # Woodward & Long,
        # Guthmuller, J. J. Chem. Phys. 2016, 144 (6), 64106
        m2 = ResonantRaman.m2
        alpha2_r = m2(alpha_rcc[:, 0, 0] + alpha_rcc[:, 1, 1] +
                      alpha_rcc[:, 2, 2]) / 9.
        delta2_r = 3 / 4. * (m2(alpha_rcc[:, 0, 1] - alpha_rcc[:, 1, 0]) +
                             m2(alpha_rcc[:, 0, 2] - alpha_rcc[:, 2, 0]) +
                             m2(alpha_rcc[:, 1, 2] - alpha_rcc[:, 2, 1]))
        gamma2_r = (3 / 4. * (m2(alpha_rcc[:, 0, 1] + alpha_rcc[:, 1, 0]) +
                              m2(alpha_rcc[:, 0, 2] + alpha_rcc[:, 2, 0]) +
                              m2(alpha_rcc[:, 1, 2] + alpha_rcc[:, 2, 1])) +
                    (m2(alpha_rcc[:, 0, 0] - alpha_rcc[:, 1, 1]) +
                     m2(alpha_rcc[:, 0, 0] - alpha_rcc[:, 2, 2]) +
                     m2(alpha_rcc[:, 1, 1] - alpha_rcc[:, 2, 2])) / 2)

        if self.observation['geometry'] == '-Z(XX)Z':  # Porto's notation
            return (45 * alpha2_r + 5 * delta2_r + 4 * gamma2_r) / 45.
        elif self.observation['geometry'] == '-Z(XY)Z':  # Porto's notation
            return gamma2_r / 15.
        elif self.observation['scattered'] == 'Z':
            # scattered light in direction of incoming light
            return (45 * alpha2_r + 5 * delta2_r + 7 * gamma2_r) / 45.
        elif self.observation['scattered'] == 'parallel':
            # scattered light perendicular and
            # polarization in plane
            return 6 * gamma2_r / 45.
        elif self.observation['scattered'] == 'perpendicular':
            # scattered light perendicular and
            # polarization out of plane
            return (45 * alpha2_r + 5 * delta2_r + 7 * gamma2_r) / 45.
        else:
            raise NotImplementedError

    def get_cross_sections(self, omega, gamma=0.1):
        I_r = self.get_intensities(omega, gamma)
        pre = 1. / 16 / np.pi**2 / units.eps0**2 / units.c**4
        # frequency of scattered light
        omS_r = omega - self.hnu
        return pre * omega * omS_r**3 * I_r

    def get_spectrum(self,
                     omega,
                     gamma=0.1,
                     start=200.0,
                     end=4000.0,
                     npts=None,
                     width=4.0,
                     type='Gaussian',
                     method='standard',
                     direction='central',
                     intensity_unit='????',
                     normalize=False):
        """Get resonant Raman spectrum.

        The method returns wavenumbers in cm^-1 with corresponding
        Raman cross section.
        Start and end point, and width of the Gaussian/Lorentzian should
        be given in cm^-1.
        """

        self.type = type.lower()
        assert self.type in ['gaussian', 'lorentzian']

        if not npts:
            npts = int((end - start) / width * 10 + 1)
        frequencies = self.get_frequencies(method, direction).real
        intensities = self.get_cross_sections(omega, gamma)
        prefactor = 1
        if type == 'lorentzian':
            intensities = intensities * width * np.pi / 2.
            if normalize:
                prefactor = 2. / width / np.pi
        else:
            sigma = width / 2. / np.sqrt(2. * np.log(2.))
            if normalize:
                prefactor = 1. / sigma / np.sqrt(2 * np.pi)
        # Make array with spectrum data
        spectrum = np.empty(npts)
        energies = np.linspace(start, end, npts)
        for i, energy in enumerate(energies):
            energies[i] = energy
            if type == 'lorentzian':
                spectrum[i] = (intensities * 0.5 * width / np.pi / (
                    (frequencies - energy)**2 + 0.25 * width**2)).sum()
            else:
                spectrum[i] = (
                    intensities *
                    np.exp(-(frequencies - energy)**2 / 2. / sigma**2)).sum()
        return [energies, prefactor * spectrum]

    def write_spectrum(self,
                       omega,
                       gamma,
                       out='resonant-raman-spectra.dat',
                       start=200,
                       end=4000,
                       npts=None,
                       width=10,
                       type='Gaussian',
                       method='standard',
                       direction='central'):
        """Write out spectrum to file.

        First column is the wavenumber in cm^-1, the second column the
        absolute infrared intensities, and
        the third column the absorbance scaled so that data runs
        from 1 to 0. Start and end
        point, and width of the Gaussian/Lorentzian should be given
        in cm^-1."""
        energies, spectrum = self.get_spectrum(omega, gamma, start, end, npts,
                                               width, type, method, direction)

        # Write out spectrum in file. First column is absolute intensities.
        outdata = np.empty([len(energies), 3])
        outdata.T[0] = energies
        outdata.T[1] = spectrum
        fd = open(out, 'w')
        fd.write('# Resonant Raman spectrum\n')
        fd.write('# omega={0:g} eV, gamma={1:g} eV\n'.format(omega, gamma))
        fd.write('# %s folded, width=%g cm^-1\n' % (type.title(), width))
        fd.write('# [cm^-1]  [a.u.]\n')

        for row in outdata:
            fd.write('%.3f  %15.5g\n' % (row[0], row[1]))
        fd.close()

    def summary(self,
                omega,
                gamma=0.1,
                method='standard',
                direction='central',
                log=sys.stdout):
        """Print summary for given omega [eV]"""
        hnu = self.get_energies(method, direction)
        s = 0.01 * units._e / units._c / units._hplanck
        intensities = self.get_intensities(omega, gamma)

        if isinstance(log, basestring):
            log = paropen(log, 'a')

        parprint('-------------------------------------', file=log)
        parprint(' excitation at ' + str(omega) + ' eV', file=log)
        parprint(' gamma ' + str(gamma) + ' eV', file=log)
        parprint(' approximation:', self.approximation, file=log)
        parprint(' observation:', self.observation, '\n', file=log)
        parprint(' Mode    Frequency        Intensity', file=log)
        parprint('  #    meV     cm^-1      [e^4A^4/eV^2]', file=log)
        parprint('-------------------------------------', file=log)
        for n, e in enumerate(hnu):
            if e.imag != 0:
                c = 'i'
                e = e.imag
            else:
                c = ' '
                e = e.real
            parprint('%3d %6.1f%s  %7.1f%s  %9.3g' %
                     (n, 1000 * e, c, s * e, c, intensities[n]),
                     file=log)
        parprint('-------------------------------------', file=log)
        parprint('Zero-point energy: %.3f eV' % self.get_zero_point_energy(),
                 file=log)

    def __del__(self):
        self.timer.write(self.txt)
예제 #15
0
loa.center()

fgl = [False, True]
#fgl = [True, False]

txt='-'
txt='/dev/null'

E = {}
niter = {}
for fg in fgl:
    if fg:
        tstr = 'Exx on fine grid'
    else:
        tstr = 'Exx on coarse grid'
    timer.start(tstr)
    calc = GPAW(h=0.3,
                eigensolver='rmm-diis',
                xc='PBE',
                nbands=4,
                convergence={'eigenstates': 1e-4},
                charge=-1)
    loa.set_calculator(calc)
    E[fg] = loa.get_potential_energy()
    calc.set(xc=HybridXC('PBE0', finegrid=fg))
    E[fg] = loa.get_potential_energy()
    niter[fg] = calc.get_number_of_iterations()
    timer.stop(tstr)

timer.write(sys.stdout)
예제 #16
0
class ResonantRaman(Vibrations):
    """Class for calculating vibrational modes and
    resonant Raman intensities using finite difference.

    atoms:
        Atoms object
    Excitations:
        Class to calculate the excitations. The class object is
        initialized as::

            Excitations(atoms.get_calculator())

        or by reading form a file as::

            Excitations('filename', **exkwargs)

        The file is written by calling the method
        Excitations.write('filename').

        Excitations should work like a list of ex obejects, where:
            ex.get_dipole_me(form='v'):
                gives the dipole matrix element in |e| * Angstrom
            ex.energy:
                is the transition energy in Hartrees
    """
    def __init__(self, atoms, Excitations,
                 indices=None,
                 gsname='rraman',  # name for ground state calculations
                 exname=None,      # name for excited state calculations
                 delta=0.01,
                 nfree=2,
                 directions=None,
                 approximation='Profeta',
                 observation={'geometry': '-Z(XX)Z'},
                 exkwargs={},      # kwargs to be passed to Excitations
                 exext='.ex.gz',   # extension for Excitation names
                 txt='-',
                 verbose=False,):
        assert(nfree == 2)
        Vibrations.__init__(self, atoms, indices, gsname, delta, nfree)
        self.name = gsname + '-d%.3f' % delta
        if exname is None:
            exname = gsname
        self.exname = exname + '-d%.3f' % delta
        self.exext = exext

        if directions is None:
            self.directions = np.array([0, 1, 2])
        else:
            self.directions = np.array(directions)

        self.approximation = approximation
        self.observation = observation
        self.exobj = Excitations
        self.exkwargs = exkwargs

        self.timer = Timer()
        self.txt = convert_string_to_fd(txt)

        self.verbose = verbose

    @staticmethod
    def m2(z):
        return (z * z.conj()).real

    def log(self, message, pre='# ', end='\n'):
        if self.verbose:
            self.txt.write(pre + message + end)
            self.txt.flush()

    def calculate(self, filename, fd):
        """Call ground and excited state calculation"""
        self.timer.start('Ground state')
        forces = self.atoms.get_forces()
        if rank == 0:
            pickle.dump(forces, fd, protocol=2)
            fd.close()
        self.timer.stop('Ground state')

        self.timer.start('Excitations')
        basename, _ = os.path.splitext(filename)
        excitations = self.exobj(
            self.atoms.get_calculator(), **self.exkwargs)
        excitations.write(basename + self.exext)
        self.timer.stop('Excitations')

    def read_excitations(self):
        self.timer.start('read excitations')
        self.timer.start('really read')
        self.log('reading ' + self.exname + '.eq' + self.exext)
        ex0_object = self.exobj(self.exname + '.eq' + self.exext,
                                **self.exkwargs)
        self.timer.stop('really read')
        self.timer.start('index')
        matching = frozenset(ex0_object)
        self.timer.stop('index')

        def append(lst, exname, matching):
            self.timer.start('really read')
            self.log('reading ' + exname, end=' ')
            exo = self.exobj(exname, **self.exkwargs)
            lst.append(exo)
            self.timer.stop('really read')
            self.timer.start('index')
            matching = matching.intersection(exo)
            self.log('len={0}, matching={1}'.format(len(exo),
                                                    len(matching)), pre='')
            self.timer.stop('index')
            return matching

        exm_object_list = []
        exp_object_list = []
        for a in self.indices:
            for i in 'xyz':
                name = '%s.%d%s' % (self.exname, a, i)
                matching = append(exm_object_list,
                                  name + '-' + self.exext, matching)
                matching = append(exp_object_list,
                                  name + '+' + self.exext, matching)
        self.ndof = 3 * len(self.indices)
        self.nex = len(matching)
        self.timer.stop('read excitations')

        self.timer.start('select')

        def select(exl, matching):
            mlst = [ex for ex in exl if ex in matching]
            assert(len(mlst) == len(matching))
            return mlst
        ex0 = select(ex0_object, matching)
        exm = []
        exp = []
        r = 0
        for a in self.indices:
            for i in 'xyz':
                exm.append(select(exm_object_list[r], matching))
                exp.append(select(exp_object_list[r], matching))
                r += 1
        self.timer.stop('select')

        self.timer.start('me and energy')

        eu = units.Hartree
        self.ex0E_p = np.array([ex.energy * eu for ex in ex0])
        self.ex0m_pc = np.array(
            [ex.get_dipole_me(form='v') for ex in ex0])
        exmE_rp = []
        expE_rp = []
        exF_rp = []
        exmm_rpc = []
        expm_rpc = []
        r = 0
        for a in self.indices:
            for i in 'xyz':
                exmE_rp.append([em.energy for em in exm[r]])
                expE_rp.append([ep.energy for ep in exp[r]])
                exF_rp.append(
                    [(ep.energy - em.energy)
                     for ep, em in zip(exp[r], exm[r])])
                exmm_rpc.append(
                    [ex.get_dipole_me(form='v') for ex in exm[r]])
                expm_rpc.append(
                    [ex.get_dipole_me(form='v') for ex in exp[r]])
                r += 1
        self.exmE_rp = np.array(exmE_rp) * eu
        self.expE_rp = np.array(expE_rp) * eu
        self.exF_rp = np.array(exF_rp) * eu / 2 / self.delta
        self.exmm_rpc = np.array(exmm_rpc)
        self.expm_rpc = np.array(expm_rpc)

        self.timer.stop('me and energy')

    def read(self, method='standard', direction='central'):
        """Read data from a pre-performed calculation."""
        if not hasattr(self, 'modes'):
            self.timer.start('read vibrations')
            Vibrations.read(self, method, direction)
            # we now have:
            # self.H     : Hessian matrix
            # self.im    : 1./sqrt(masses)
            # self.modes : Eigenmodes of the mass weighted H
            self.om_r = self.hnu.real    # energies in eV
            self.timer.stop('read vibrations')
        if not hasattr(self, 'ex0E_p'):
            self.read_excitations()

    def get_Huang_Rhys_factors(self, forces_r):
        """Evaluate Huang-Rhys factors derived from forces."""
        self.timer.start('Huang-Rhys')
        assert(len(forces_r.flat) == self.ndof)

        # solve the matrix equation for the equilibrium displacements
        # XXX why are the forces mass weighted ???
        X_r = np.linalg.solve(self.im[:, None] * self.H * self.im,
                              forces_r.flat * self.im)
        d_r = np.dot(self.modes, X_r)

        # Huang-Rhys factors S
        s = 1.e-20 / units.kg / units.C / units._hbar**2  # SI units
        self.timer.stop('Huang-Rhys')
        return s * d_r**2 * self.om_r / 2.

    def get_matrix_element_AlbrechtA(self, omega, gamma=0.1, ml=range(16)):
        """Evaluate Albrecht A term.

        Unit: |e|^2Angstrom^2/eV
        """
        self.read()

        self.timer.start('AlbrechtA')

        if not hasattr(self, 'fco'):
            self.fco = FranckCondonOverlap()

        # excited state forces
        F_pr = self.exF_rp.T

        m_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
        for p, energy in enumerate(self.ex0E_p):
            S_r = self.get_Huang_Rhys_factors(F_pr[p])
            me_cc = np.outer(self.ex0m_pc[p], self.ex0m_pc[p].conj())

            for m in ml:
                self.timer.start('0mm1')
                fco_r = self.fco.direct0mm1(m, S_r)
                self.timer.stop('0mm1')
                self.timer.start('einsum')
                m_rcc += np.einsum('a,bc->abc',
                                   fco_r / (energy + m * self.om_r - omega -
                                            1j * gamma),
                                   me_cc)
                m_rcc += np.einsum('a,bc->abc',
                                   fco_r / (energy + (m - 1) * self.om_r +
                                            omega + 1j * gamma),
                                   me_cc)
                self.timer.stop('einsum')

        self.timer.stop('AlbrechtA')
        return m_rcc

    def get_matrix_element_AlbrechtBC(self, omega, gamma=0.1, ml=[1],
                                      term='BC'):
        """Evaluate Albrecht B and/or C term(s)."""
        self.read()

        self.timer.start('AlbrechtBC')

        if not hasattr(self, 'fco'):
            self.fco = FranckCondonOverlap()

        # excited state forces
        F_pr = self.exF_rp.T

        m_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
        for p, energy in enumerate(self.ex0E_p):
            S_r = self.get_Huang_Rhys_factors(F_pr[p])

            for m in ml:
                self.timer.start('Franck-Condon overlaps')
                fc1mm1_r = self.fco.direct(1, m, S_r)
                fc0mm02_r = self.fco.direct(0, m, S_r)
                fc0mm02_r += np.sqrt(2) * self.fco.direct0mm2(m, S_r)
                # XXXXX
                fc1mm1_r[-1] = 1
                fc0mm02_r[-1] = 1
                print(m, fc1mm1_r[-1], fc0mm02_r[-1])
                self.timer.stop('Franck-Condon overlaps')

                self.timer.start('me dervivatives')
                dm_rc = []
                r = 0
                for a in self.indices:
                    for i in 'xyz':
                        dm_rc.append(
                            (self.expm_rpc[r, p] - self.exmm_rpc[r, p]) *
                            self.im[r])
                        print('pm=', self.expm_rpc[r, p], self.exmm_rpc[r, p])
                        r += 1
                dm_rc = np.array(dm_rc) / (2 * self.delta)
                self.timer.stop('me dervivatives')

                self.timer.start('map to modes')
                # print('dm_rc[2], dm_rc[5]', dm_rc[2], dm_rc[5])
                print('dm_rc=', dm_rc)
                dm_rc = np.dot(dm_rc.T, self.modes.T).T
                print('dm_rc[-1][2]', dm_rc[-1][2])
                self.timer.stop('map to modes')

                self.timer.start('multiply')
                # me_cc = np.outer(self.ex0m_pc[p], self.ex0m_pc[p].conj())
                for r in range(self.ndof):
                    if 'B' in term:
                        # XXXX
                        denom = (1. /
                                 (energy + m * 0 * self.om_r[r] -
                                  omega - 1j * gamma))
                        # ok print('denom=', denom)
                        m_rcc[r] += (np.outer(dm_rc[r],
                                              self.ex0m_pc[p].conj()) *
                                     fc1mm1_r[r] * denom)
                        if r == 5:
                            print('m_rcc[r]=', m_rcc[r][2, 2])
                        m_rcc[r] += (np.outer(self.ex0m_pc[p],
                                              dm_rc[r].conj()) *
                                     fc0mm02_r[r] * denom)
                    if 'C' in term:
                        denom = (1. /
                                 (energy + (m - 1) * self.om_r[r] +
                                  omega + 1j * gamma))
                        m_rcc[r] += (np.outer(self.ex0m_pc[p],
                                              dm_rc[r].conj()) *
                                     fc1mm1_r[r] * denom)
                        m_rcc[r] += (np.outer(dm_rc[r],
                                              self.ex0m_pc[p].conj()) *
                                     fc0mm02_r[r] * denom)
                self.timer.stop('multiply')
        print('m_rcc[-1]=', m_rcc[-1][2, 2])

        self.timer.start('pre_r')
        with np.errstate(divide='ignore'):
            pre_r = np.where(self.om_r > 0,
                             np.sqrt(units._hbar**2 / 2. / self.om_r), 0)
            # print('BC: pre_r=', pre_r)
        for r, p in enumerate(pre_r):
            m_rcc[r] *= p
        self.timer.stop('pre_r')
        self.timer.stop('AlbrechtBC')
        return m_rcc

    def get_matrix_element_Profeta(self, omega, gamma=0.1,
                                   energy_derivative=False):
        """Evaluate Albrecht B+C term in Profeta and Mauri approximation"""
        self.read()

        self.timer.start('amplitudes')

        self.timer.start('init')
        V_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
        pre = 1. / (2 * self.delta)
        self.timer.stop('init')

        def kappa(me_pc, e_p, omega, gamma, form='v'):
            """Kappa tensor after Profeta and Mauri
            PRB 63 (2001) 245415"""
            me_ccp = np.empty((3, 3, len(e_p)), dtype=complex)
            for p, me_c in enumerate(me_pc):
                me_ccp[:, :, p] = np.outer(me_pc[p], me_pc[p].conj())
                # print('kappa: me_ccp=', me_ccp[2,2,0])
                # ok print('kappa: den=', 1./(e_p - omega - 1j * gamma))
            kappa_ccp = (me_ccp / (e_p - omega - 1j * gamma) +
                         me_ccp.conj() / (e_p + omega + 1j * gamma))
            return kappa_ccp.sum(2)

        self.timer.start('kappa')
        r = 0
        for a in self.indices:
            for i in 'xyz':
                if not energy_derivative < 0:
                    V_rcc[r] = pre * self.im[r] * (
                        kappa(self.expm_rpc[r], self.ex0E_p, omega, gamma) -
                        kappa(self.exmm_rpc[r], self.ex0E_p, omega, gamma))
                if energy_derivative:
                    V_rcc[r] += pre * self.im[r] * (
                        kappa(self.ex0m_pc, self.expE_rp[r], omega, gamma) -
                        kappa(self.ex0m_pc, self.exmE_rp[r], omega, gamma))
                r += 1
        self.timer.stop('kappa')
        # print('V_rcc[2], V_rcc[5]=', V_rcc[2,2,2], V_rcc[5,2,2])

        self.timer.stop('amplitudes')

        # map to modes
        self.timer.start('pre_r')
        with np.errstate(divide='ignore'):
            pre_r = np.where(self.om_r > 0,
                             np.sqrt(units._hbar**2 / 2. / self.om_r), 0)
        V_rcc = np.dot(V_rcc.T, self.modes.T).T
        # looks ok        print('self.modes.T[-1]',self.modes.T)
        # looks ok       print('V_rcc[-1]=', V_rcc[-1][2,2])
        # ok       print('Profeta: pre_r=', pre_r)
        for r, p in enumerate(pre_r):
            V_rcc[r] *= p
        self.timer.stop('pre_r')
        return V_rcc

    def get_matrix_element(self, omega, gamma):
        self.read()
        V_rcc = np.zeros((self.ndof, 3, 3), dtype=complex)
        if self.approximation.lower() == 'profeta':
            V_rcc += self.get_matrix_element_Profeta(omega, gamma)
        elif self.approximation.lower() == 'placzek':
            V_rcc += self.get_matrix_element_Profeta(omega, gamma, True)
        elif self.approximation.lower() == 'p-p':
            V_rcc += self.get_matrix_element_Profeta(omega, gamma, -1)
        elif self.approximation.lower() == 'albrecht a':
            V_rcc += self.get_matrix_element_AlbrechtA(omega, gamma)
        elif self.approximation.lower() == 'albrecht b':
            raise NotImplementedError('not working')
            V_rcc += self.get_matrix_element_AlbrechtBC(omega, gamma, term='B')
        elif self.approximation.lower() == 'albrecht c':
            raise NotImplementedError('not working')
            V_rcc += self.get_matrix_element_AlbrechtBC(omega, gamma, term='C')
        elif self.approximation.lower() == 'albrecht bc':
            raise NotImplementedError('not working')
            V_rcc += self.get_matrix_element_AlbrechtBC(omega, gamma)
        elif self.approximation.lower() == 'albrecht':
            raise NotImplementedError('not working')
            V_rcc += self.get_matrix_element_AlbrechtA(omega, gamma)
            V_rcc += self.get_matrix_element_AlbrechtBC(omega, gamma)
        elif self.approximation.lower() == 'albrecht+profeta':
            V_rcc += self.get_matrix_element_AlbrechtA(omega, gamma)
            V_rcc += self.get_matrix_element_Profeta(omega, gamma)
        else:
            raise NotImplementedError(
                'Approximation {0} not implemented. '.format(
                    self.approximation) +
                'Please use "Profeta", "Albrecht A/B/C/BC", ' +
                'or "Albrecht".')

        return V_rcc

    def get_intensities(self, omega, gamma=0.1):
        m2 = ResonantRaman.m2
        alpha_rcc = self.get_matrix_element(omega, gamma)
        if not self.observation:  # XXXX remove
            """Simple sum, maybe too simple"""
            return m2(alpha_rcc).sum(axis=1).sum(axis=1)
        # XXX enable when appropraiate
        #        if self.observation['orientation'].lower() != 'random':
        #            raise NotImplementedError('not yet')

        # random orientation of the molecular frame
        # Woodward & Long,
        # Guthmuller, J. J. Chem. Phys. 2016, 144 (6), 64106
        m2 = ResonantRaman.m2
        alpha2_r = m2(alpha_rcc[:, 0, 0] + alpha_rcc[:, 1, 1] +
                      alpha_rcc[:, 2, 2]) / 9.
        delta2_r = 3 / 4. * (
            m2(alpha_rcc[:, 0, 1] - alpha_rcc[:, 1, 0]) +
            m2(alpha_rcc[:, 0, 2] - alpha_rcc[:, 2, 0]) +
            m2(alpha_rcc[:, 1, 2] - alpha_rcc[:, 2, 1]))
        gamma2_r = (3 / 4. * (m2(alpha_rcc[:, 0, 1] + alpha_rcc[:, 1, 0]) +
                              m2(alpha_rcc[:, 0, 2] + alpha_rcc[:, 2, 0]) +
                              m2(alpha_rcc[:, 1, 2] + alpha_rcc[:, 2, 1])) +
                    (m2(alpha_rcc[:, 0, 0] - alpha_rcc[:, 1, 1]) +
                     m2(alpha_rcc[:, 0, 0] - alpha_rcc[:, 2, 2]) +
                     m2(alpha_rcc[:, 1, 1] - alpha_rcc[:, 2, 2])) / 2)

        if self.observation['geometry'] == '-Z(XX)Z':  # Porto's notation
            return (45 * alpha2_r + 5 * delta2_r + 4 * gamma2_r) / 45.
        elif self.observation['geometry'] == '-Z(XY)Z':  # Porto's notation
            return gamma2_r / 15.
        elif self.observation['scattered'] == 'Z':
            # scattered light in direction of incoming light
            return (45 * alpha2_r + 5 * delta2_r + 7 * gamma2_r) / 45.
        elif self.observation['scattered'] == 'parallel':
            # scattered light perendicular and
            # polarization in plane
            return 6 * gamma2_r / 45.
        elif self.observation['scattered'] == 'perpendicular':
            # scattered light perendicular and
            # polarization out of plane
            return (45 * alpha2_r + 5 * delta2_r + 7 * gamma2_r) / 45.
        else:
            raise NotImplementedError

    def get_cross_sections(self, omega, gamma=0.1):
        I_r = self.get_intensities(omega, gamma)
        pre = 1. / 16 / np.pi**2 / units.eps0**2 / units.c**4
        # frequency of scattered light
        omS_r = omega - self.hnu
        return pre * omega * omS_r**3 * I_r

    def get_spectrum(self, omega, gamma=0.1,
                     start=200.0, end=4000.0, npts=None, width=4.0,
                     type='Gaussian', method='standard', direction='central',
                     intensity_unit='????', normalize=False):
        """Get resonant Raman spectrum.

        The method returns wavenumbers in cm^-1 with corresponding
        Raman cross section.
        Start and end point, and width of the Gaussian/Lorentzian should
        be given in cm^-1.
        """

        self.type = type.lower()
        assert self.type in ['gaussian', 'lorentzian']

        if not npts:
            npts = int((end - start) / width * 10 + 1)
        frequencies = self.get_frequencies(method, direction).real
        intensities = self.get_cross_sections(omega, gamma)
        prefactor = 1
        if type == 'lorentzian':
            intensities = intensities * width * np.pi / 2.
            if normalize:
                prefactor = 2. / width / np.pi
        else:
            sigma = width / 2. / np.sqrt(2. * np.log(2.))
            if normalize:
                prefactor = 1. / sigma / np.sqrt(2 * np.pi)
        # Make array with spectrum data
        spectrum = np.empty(npts)
        energies = np.linspace(start, end, npts)
        for i, energy in enumerate(energies):
            energies[i] = energy
            if type == 'lorentzian':
                spectrum[i] = (intensities * 0.5 * width / np.pi /
                               ((frequencies - energy)**2 +
                                0.25 * width**2)).sum()
            else:
                spectrum[i] = (intensities *
                               np.exp(-(frequencies - energy)**2 /
                                      2. / sigma**2)).sum()
        return [energies, prefactor * spectrum]

    def write_spectrum(self, omega, gamma,
                       out='resonant-raman-spectra.dat',
                       start=200, end=4000,
                       npts=None, width=10,
                       type='Gaussian', method='standard',
                       direction='central'):
        """Write out spectrum to file.

        First column is the wavenumber in cm^-1, the second column the
        absolute infrared intensities, and
        the third column the absorbance scaled so that data runs
        from 1 to 0. Start and end
        point, and width of the Gaussian/Lorentzian should be given
        in cm^-1."""
        energies, spectrum = self.get_spectrum(omega, gamma,
                                               start, end, npts, width,
                                               type, method, direction)

        # Write out spectrum in file. First column is absolute intensities.
        outdata = np.empty([len(energies), 3])
        outdata.T[0] = energies
        outdata.T[1] = spectrum
        fd = open(out, 'w')
        fd.write('# Resonant Raman spectrum\n')
        fd.write('# omega={0:g} eV, gamma={1:g} eV\n'.format(omega, gamma))
        fd.write('# %s folded, width=%g cm^-1\n' % (type.title(), width))
        fd.write('# [cm^-1]  [a.u.]\n')

        for row in outdata:
            fd.write('%.3f  %15.5g\n' %
                     (row[0], row[1]))
        fd.close()

    def summary(self, omega, gamma=0.1,
                method='standard', direction='central',
                log=sys.stdout):
        """Print summary for given omega [eV]"""
        hnu = self.get_energies(method, direction)
        s = 0.01 * units._e / units._c / units._hplanck
        intensities = self.get_intensities(omega, gamma)

        if isinstance(log, basestring):
            log = paropen(log, 'a')

        parprint('-------------------------------------', file=log)
        parprint(' excitation at ' + str(omega) + ' eV', file=log)
        parprint(' gamma ' + str(gamma) + ' eV', file=log)
        parprint(' approximation:', self.approximation, file=log)
        parprint(' observation:', self.observation, '\n', file=log)
        parprint(' Mode    Frequency        Intensity', file=log)
        parprint('  #    meV     cm^-1      [e^4A^4/eV^2]', file=log)
        parprint('-------------------------------------', file=log)
        for n, e in enumerate(hnu):
            if e.imag != 0:
                c = 'i'
                e = e.imag
            else:
                c = ' '
                e = e.real
            parprint('%3d %6.1f%s  %7.1f%s  %9.3g' %
                     (n, 1000 * e, c, s * e, c, intensities[n]),
                     file=log)
        parprint('-------------------------------------', file=log)
        parprint('Zero-point energy: %.3f eV' % self.get_zero_point_energy(),
                 file=log)

    def __del__(self):
        self.timer.write(self.txt)
예제 #17
0
    def get_rpa(self):
        """Calculate RPA and Hartree-fock part of the A+-B matrices."""

        # shorthands
        kss = self.fullkss
        finegrid = self.finegrid

        # calculate omega matrix
        nij = len(kss)
        print('RPAhyb', nij, 'transitions', file=self.txt)

        AmB = np.zeros((nij, nij))
        ApB = self.ApB

        # storage place for Coulomb integrals
        integrals = {}

        for ij in range(nij):
            print('RPAhyb kss[' + '%d' % ij + ']=', kss[ij], file=self.txt)

            timer = Timer()
            timer.start('init')
            timer2 = Timer()

            # smooth density including compensation charges
            timer2.start('with_compensation_charges 0')
            rhot_p = kss[ij].with_compensation_charges(finegrid is not 0)
            timer2.stop()

            # integrate with 1/|r_1-r_2|
            timer2.start('poisson')
            phit_p = np.zeros(rhot_p.shape, rhot_p.dtype)
            self.poisson.solve(phit_p, rhot_p, charge=None)
            timer2.stop()

            timer.stop()
            t0 = timer.get_time('init')
            timer.start(ij)

            if finegrid == 1:
                rhot = kss[ij].with_compensation_charges()
                phit = self.gd.zeros()
                self.restrict(phit_p, phit)
            else:
                phit = phit_p
                rhot = rhot_p

            for kq in range(ij, nij):
                if kq != ij:
                    # smooth density including compensation charges
                    timer2.start('kq with_compensation_charges')
                    rhot = kss[kq].with_compensation_charges(finegrid is 2)
                    timer2.stop()
                pre = self.weight_Kijkq(ij, kq)

                timer2.start('integrate')
                I = self.Coulomb_integral_kss(kss[ij], kss[kq], phit, rhot)
                if kss[ij].spin == kss[kq].spin:
                    name = self.Coulomb_integral_name(kss[ij].i, kss[ij].j,
                                                      kss[kq].i, kss[kq].j,
                                                      kss[ij].spin)
                    integrals[name] = I
                ApB[ij, kq] = pre * I
                timer2.stop()

                if ij == kq:
                    epsij = kss[ij].get_energy() / kss[ij].get_weight()
                    AmB[ij, kq] += epsij
                    ApB[ij, kq] += epsij

            timer.stop()
            # timer2.write()
            if ij < (nij - 1):
                print('RPAhyb estimated time left',
                      self.time_left(timer, t0, ij, nij),
                      file=self.txt)

        # add HF parts and apply symmetry
        if hasattr(self.xc, 'hybrid'):
            weight = self.xc.hybrid
        else:
            weight = 0.0
        for ij in range(nij):
            print('HF kss[' + '%d' % ij + ']', file=self.txt)
            timer = Timer()
            timer.start('init')
            timer.stop()
            t0 = timer.get_time('init')
            timer.start(ij)

            i = kss[ij].i
            j = kss[ij].j
            s = kss[ij].spin
            for kq in range(ij, nij):
                if kss[ij].pspin == kss[kq].pspin:
                    k = kss[kq].i
                    q = kss[kq].j
                    ikjq = self.Coulomb_integral_ijkq(i, k, j, q, s, integrals)
                    iqkj = self.Coulomb_integral_ijkq(i, q, k, j, s, integrals)
                    ApB[ij, kq] -= weight * (ikjq + iqkj)
                    AmB[ij, kq] -= weight * (ikjq - iqkj)

                ApB[kq, ij] = ApB[ij, kq]
                AmB[kq, ij] = AmB[ij, kq]

            timer.stop()
            if ij < (nij - 1):
                print('HF estimated time left',
                      self.time_left(timer, t0, ij, nij),
                      file=self.txt)

        return AmB
예제 #18
0
 def start(self, name):
     Timer.start(self, name)
     if name in self.compatible:
         self.hpm_start(name)
예제 #19
0
파일: timing.py 프로젝트: thonmaker/gpaw
 def start(self, name):
     Timer.start(self, name)
     abstime = time.time()
     t = self.timers[tuple(self.running)] + abstime
     self.txt.write('T%s >> %15.8f %s (%7.5fs) started\n'
                    % (self.srank, abstime, name, t))
예제 #20
0
class RPACorrelation:
    def __init__(self, calc, xc='RPA', filename=None,
                 skip_gamma=False, qsym=True, nlambda=None,
                 nfrequencies=16, frequency_max=800.0, frequency_scale=2.0,
                 frequencies=None, weights=None, truncation=None,
                 world=mpi.world, nblocks=1, txt=sys.stdout):
        """Creates the RPACorrelation object
        
        calc: str or calculator object
            The string should refer to the .gpw file contaning KS orbitals
        xc: str
            Exchange-correlation kernel. This is only different from RPA when
            this object is constructed from a different module - e.g. fxc.py
        filename: str
            txt output
        skip_gamme: bool
            If True, skip q = [0,0,0] from the calculation
        qsym: bool
            Use symmetry to reduce q-points
        nlambda: int
            Number of lambda points. Only used for numerical coupling
            constant integration involved when called from fxc.py
        nfrequencies: int
            Number of frequency points used in the Gauss-Legendre integration
        frequency_max: float
            Largest frequency point in Gauss-Legendre integration
        frequency_scale: float
            Determines density of frequency points at low frequencies. A slight
            increase to e.g. 2.5 or 3.0 improves convergence wth respect to
            frequency points for metals
        frequencies: list
            List of frequancies for user-specified frequency integration
        weights: list
            list of weights (integration measure) for a user specified
            frequency grid. Must be specified and have the same length as
            frequencies if frequencies is not None
        truncation: str
            Coulomb truncation scheme. Can be either wigner-seitz,
            2D, 1D, or 0D
        world: communicator
        nblocks: int
            Number of parallelization blocks. Frequency parallelization
            can be specified by setting nblocks=nfrequencies and is useful
            for memory consuming calculations
        txt: str
            txt file for saving and loading contributions to the correlation
            energy from different q-points
        """

        if isinstance(calc, str):
            calc = GPAW(calc, txt=None, communicator=mpi.serial_comm)
        self.calc = calc

        if world.rank != 0:
            txt = devnull
        elif isinstance(txt, str):
            txt = open(txt, 'w', 1)
        self.fd = txt

        self.timer = Timer()
        
        if frequencies is None:
            frequencies, weights = get_gauss_legendre_points(nfrequencies,
                                                             frequency_max,
                                                             frequency_scale)
            user_spec = False
        else:
            assert weights is not None
            user_spec = True
            
        self.omega_w = frequencies / Hartree
        self.weight_w = weights / Hartree

        if nblocks > 1:
            assert len(self.omega_w) % nblocks == 0

        self.nblocks = nblocks
        self.world = world

        self.truncation = truncation
        self.skip_gamma = skip_gamma
        self.ibzq_qc = None
        self.weight_q = None
        self.initialize_q_points(qsym)

        # Energies for all q-vetors and cutoff energies:
        self.energy_qi = []

        self.filename = filename

        self.print_initialization(xc, frequency_scale, nlambda, user_spec)

    def initialize_q_points(self, qsym):
        kd = self.calc.wfs.kd
        self.bzq_qc = kd.get_bz_q_points(first=True)

        if not qsym:
            self.ibzq_qc = self.bzq_qc
            self.weight_q = np.ones(len(self.bzq_qc)) / len(self.bzq_qc)
        else:
            U_scc = kd.symmetry.op_scc
            self.ibzq_qc = kd.get_ibz_q_points(self.bzq_qc, U_scc)[0]
            self.weight_q = kd.q_weights

    def read(self):
        lines = open(self.filename).readlines()[1:]
        n = 0
        self.energy_qi = []
        nq = len(lines) // len(self.ecut_i)
        for q_c in self.ibzq_qc[:nq]:
            self.energy_qi.append([])
            for ecut in self.ecut_i:
                q1, q2, q3, ec, energy = [float(x)
                                          for x in lines[n].split()]
                self.energy_qi[-1].append(energy / Hartree)
                n += 1

                if (abs(q_c - (q1, q2, q3)).max() > 1e-4 or
                    abs(int(ecut * Hartree) - ec) > 0):
                    self.energy_qi = []
                    return

        print('Read %d q-points from file: %s' % (nq, self.filename),
              file=self.fd)
        print(file=self.fd)

    def write(self):
        if self.world.rank == 0 and self.filename:
            fd = open(self.filename, 'w')
            print('#%9s %10s %10s %8s %12s' %
                  ('q1', 'q2', 'q3', 'E_cut', 'E_c(q)'), file=fd)
            for energy_i, q_c in zip(self.energy_qi, self.ibzq_qc):
                for energy, ecut in zip(energy_i, self.ecut_i):
                    print('%10.4f %10.4f %10.4f %8d   %r' %
                          (tuple(q_c) + (ecut * Hartree, energy * Hartree)),
                          file=fd)

    def calculate(self, ecut, nbands=None, spin=False):
        """Calculate RPA correlation energy for one or several cutoffs.

        ecut: float or list of floats
            Plane-wave cutoff(s).
        nbands: int
            Number of bands (defaults to number of plane-waves).
        spin: bool
            Separate spin in response function.
            (Only needed for beyond RPA methods that inherit this function).
        """

        p = functools.partial(print, file=self.fd)

        if isinstance(ecut, (float, int)):
            ecut = ecut * (1 + 0.5 * np.arange(6))**(-2 / 3)
        self.ecut_i = np.asarray(np.sort(ecut)) / Hartree
        ecutmax = max(self.ecut_i)

        if nbands is None:
            p('Response function bands : Equal to number of plane waves')
        else:
            p('Response function bands : %s' % nbands)
        p('Plane wave cutoffs (eV) :', end='')
        for e in self.ecut_i:
            p(' {0:.3f}'.format(e * Hartree), end='')
        p()
        if self.truncation is not None:
            p('Using %s Coulomb truncation' % self.truncation)
        p()
            
        if self.filename and os.path.isfile(self.filename):
            self.read()
            self.world.barrier()

        chi0 = Chi0(self.calc, 1j * Hartree * self.omega_w, eta=0.0,
                    intraband=False, hilbert=False,
                    txt='chi0.txt', timer=self.timer, world=self.world,
                    nblocks=self.nblocks)

        self.blockcomm = chi0.blockcomm
        
        wfs = self.calc.wfs

        if self.truncation == 'wigner-seitz':
            self.wstc = WignerSeitzTruncatedCoulomb(wfs.gd.cell_cv,
                                                    wfs.kd.N_c, self.fd)
        else:
            self.wstc = None

        nq = len(self.energy_qi)
        nw = len(self.omega_w)
        nGmax = max(count_reciprocal_vectors(ecutmax, wfs.gd, q_c)
                    for q_c in self.ibzq_qc[nq:])
        mynGmax = (nGmax + self.nblocks - 1) // self.nblocks
        
        nx = (1 + spin) * nw * mynGmax * nGmax
        A1_x = np.empty(nx, complex)
        if self.nblocks > 1:
            A2_x = np.empty(nx, complex)
        else:
            A2_x = None
        
        self.timer.start('RPA')
        
        for q_c in self.ibzq_qc[nq:]:
            if np.allclose(q_c, 0.0) and self.skip_gamma:
                self.energy_qi.append(len(self.ecut_i) * [0.0])
                self.write()
                p('Not calculating E_c(q) at Gamma')
                p()
                continue

            thisqd = KPointDescriptor([q_c])
            pd = PWDescriptor(ecutmax, wfs.gd, complex, thisqd)
            nG = pd.ngmax
            mynG = (nG + self.nblocks - 1) // self.nblocks
            chi0.Ga = self.blockcomm.rank * mynG
            chi0.Gb = min(chi0.Ga + mynG, nG)
            
            shape = (1 + spin, nw, chi0.Gb - chi0.Ga, nG)
            chi0_swGG = A1_x[:np.prod(shape)].reshape(shape)
            chi0_swGG[:] = 0.0
            
            if np.allclose(q_c, 0.0):
                chi0_swxvG = np.zeros((1 + spin, nw, 2, 3, nG), complex)
                chi0_swvv = np.zeros((1 + spin, nw, 3, 3), complex)
            else:
                chi0_swxvG = None
                chi0_swvv = None

            # First not completely filled band:
            m1 = chi0.nocc1
            p('# %s  -  %s' % (len(self.energy_qi), ctime().split()[-2]))
            p('q = [%1.3f %1.3f %1.3f]' % tuple(q_c))

            energy_i = []
            for ecut in self.ecut_i:
                if ecut == ecutmax:
                    # Nothing to cut away:
                    cut_G = None
                    m2 = nbands or nG
                else:
                    cut_G = np.arange(nG)[pd.G2_qG[0] <= 2 * ecut]
                    m2 = len(cut_G)

                p('E_cut = %d eV / Bands = %d:' % (ecut * Hartree, m2))
                self.fd.flush()

                energy = self.calculate_q(chi0, pd,
                                          chi0_swGG, chi0_swxvG, chi0_swvv,
                                          m1, m2, cut_G, A2_x)

                energy_i.append(energy)
                m1 = m2

                a = 1 / chi0.kncomm.size
                if ecut < ecutmax and a != 1.0:
                    # Chi0 will be summed again over chicomm, so we divide
                    # by its size:
                    chi0_swGG *= a
                    if chi0_swxvG is not None:
                        chi0_swxvG *= a
                        chi0_swvv *= a

            self.energy_qi.append(energy_i)
            self.write()
            p()

        e_i = np.dot(self.weight_q, np.array(self.energy_qi))
        p('==========================================================')
        p()
        p('Total correlation energy:')
        for e_cut, e in zip(self.ecut_i, e_i):
            p('%6.0f:   %6.4f eV' % (e_cut * Hartree, e * Hartree))
        p()

        self.energy_qi = []  # important if another calculation is performed

        if len(e_i) > 1:
            self.extrapolate(e_i)

        p('Calculation completed at: ', ctime())
        p()

        self.timer.stop('RPA')
        self.timer.write(self.fd)
        self.fd.flush()
        
        return e_i * Hartree

    @timer('chi0(q)')
    def calculate_q(self, chi0, pd, chi0_swGG, chi0_swxvG, chi0_swvv,
                    m1, m2, cut_G, A2_x):
        chi0_wGG = chi0_swGG[0]
        if chi0_swxvG is not None:
            chi0_wxvG = chi0_swxvG[0]
            chi0_wvv = chi0_swvv[0]
        else:
            chi0_wxvG = None
            chi0_wvv = None
        chi0._calculate(pd, chi0_wGG, chi0_wxvG, chi0_wvv,
                        m1, m2, [0, 1])
        
        print('E_c(q) = ', end='', file=self.fd)

        chi0_wGG = chi0.redistribute(chi0_wGG, A2_x)

        if not pd.kd.gamma:
            e = self.calculate_energy(pd, chi0_wGG, cut_G)
            print('%.3f eV' % (e * Hartree), file=self.fd)
            self.fd.flush()
        else:
            from ase.dft import monkhorst_pack
            kd = self.calc.wfs.kd
            N = 4
            N_c = np.array([N, N, N])
            if self.truncation is not None:
                N_c[kd.N_c == 1] = 1
            q_qc = monkhorst_pack(N_c) / kd.N_c
            q_qc *= 1.0e-6
            U_scc = kd.symmetry.op_scc
            q_qc = kd.get_ibz_q_points(q_qc, U_scc)[0]
            weight_q = kd.q_weights
            q_qv = 2 * np.pi * np.dot(q_qc, pd.gd.icell_cv)

            nw = len(self.omega_w)
            mynw = nw // self.nblocks
            w1 = self.blockcomm.rank * mynw
            w2 = w1 + mynw
            a_qw = np.sum(np.dot(chi0_wvv[w1:w2], q_qv.T) * q_qv.T, axis=1).T
            a0_qwG = np.dot(q_qv, chi0_wxvG[w1:w2, 0])
            a1_qwG = np.dot(q_qv, chi0_wxvG[w1:w2, 1])

            e = 0
            for iq in range(len(q_qv)):
                chi0_wGG[:, 0] = a0_qwG[iq]
                chi0_wGG[:, :, 0] = a1_qwG[iq]
                chi0_wGG[:, 0, 0] = a_qw[iq]
                ev = self.calculate_energy(pd, chi0_wGG, cut_G,
                                           q_v=q_qv[iq])
                e += ev * weight_q[iq]
            print('%.3f eV' % (e * Hartree), file=self.fd)
            self.fd.flush()

        return e

    @timer('Energy')
    def calculate_energy(self, pd, chi0_wGG, cut_G, q_v=None):
        """Evaluate correlation energy from chi0."""

        sqrV_G = get_coulomb_kernel(pd, self.calc.wfs.kd.N_c, q_v=q_v,
                                    truncation=self.truncation,
                                    wstc=self.wstc)**0.5
        if cut_G is not None:
            sqrV_G = sqrV_G[cut_G]
        nG = len(sqrV_G)

        e_w = []
        for chi0_GG in chi0_wGG:
            if cut_G is not None:
                chi0_GG = chi0_GG.take(cut_G, 0).take(cut_G, 1)

            e_GG = np.eye(nG) - chi0_GG * sqrV_G * sqrV_G[:, np.newaxis]
            e = np.log(np.linalg.det(e_GG)) + nG - np.trace(e_GG)
            e_w.append(e.real)

        E_w = np.zeros_like(self.omega_w)
        self.blockcomm.all_gather(np.array(e_w), E_w)
        energy = np.dot(E_w, self.weight_w) / (2 * np.pi)
        self.E_w = E_w
        return energy

    def extrapolate(self, e_i):
        print('Extrapolated energies:', file=self.fd)
        ex_i = []
        for i in range(len(e_i) - 1):
            e1, e2 = e_i[i:i + 2]
            x1, x2 = self.ecut_i[i:i + 2]**-1.5
            ex = (e1 * x2 - e2 * x1) / (x2 - x1)
            ex_i.append(ex)

            print('  %4.0f -%4.0f:  %5.3f eV' % (self.ecut_i[i] * Hartree,
                                                 self.ecut_i[i + 1] * Hartree,
                                                 ex * Hartree),
                  file=self.fd)
        print(file=self.fd)
        self.fd.flush()

        return e_i * Hartree

    def print_initialization(self, xc, frequency_scale, nlambda, user_spec):
        p = functools.partial(print, file=self.fd)
        p('----------------------------------------------------------')
        p('Non-self-consistent %s correlation energy' % xc)
        p('----------------------------------------------------------')
        p('Started at:  ', ctime())
        p()
        p('Atoms                          :',
          self.calc.atoms.get_chemical_formula(mode='hill'))
        p('Ground state XC functional     :', self.calc.hamiltonian.xc.name)
        p('Valence electrons              :', self.calc.wfs.setups.nvalence)
        p('Number of bands                :', self.calc.wfs.bd.nbands)
        p('Number of spins                :', self.calc.wfs.nspins)
        p('Number of k-points             :', len(self.calc.wfs.kd.bzk_kc))
        p('Number of irreducible k-points :', len(self.calc.wfs.kd.ibzk_kc))
        p('Number of q-points             :', len(self.bzq_qc))
        p('Number of irreducible q-points :', len(self.ibzq_qc))
        p()
        for q, weight in zip(self.ibzq_qc, self.weight_q):
            p('    q: [%1.4f %1.4f %1.4f] - weight: %1.3f' %
              (q[0], q[1], q[2], weight))
        p()
        p('----------------------------------------------------------')
        p('----------------------------------------------------------')
        p()
        if nlambda is None:
            p('Analytical coupling constant integration')
        else:
            p('Numerical coupling constant integration using', nlambda,
              'Gauss-Legendre points')
        p()
        p('Frequencies')
        if not user_spec:
            p('    Gauss-Legendre integration with %s frequency points' %
              len(self.omega_w))
            p('    Transformed from [0,oo] to [0,1] using e^[-aw^(1/B)]')
            p('    Highest frequency point at %5.1f eV and B=%1.1f' %
              (self.omega_w[-1] * Hartree, frequency_scale))
        else:
            p('    User specified frequency integration with',
              len(self.omega_w), 'frequency points')
        p()
        p('Parallelization')
        p('    Total number of CPUs          : % s' % self.world.size)
        p('    G-vector decomposition        : % s' % self.nblocks)
        p('    K-point/band decomposition    : % s' %
          (self.world.size // self.nblocks))
        p()
예제 #21
0
class ResonantRaman(Vibrations):
    """Base Class for resonant Raman intensities using finite differences.

    Parameters
    ----------
    overlap : function or False
        Function to calculate overlaps between excitation at
        equilibrium and at a displaced position. Calculators are
        given as first and second argument, respectively.
    """

    def __init__(self, atoms, Excitations,
                 indices=None,
                 gsname='rraman',  # name for ground state calculations
                 exname=None,      # name for excited state calculations
                 delta=0.01,
                 nfree=2,
                 directions=None,
                 observation={'geometry': '-Z(XX)Z'},
                 form='v',         # form of the dipole operator
                 exkwargs={},      # kwargs to be passed to Excitations
                 exext='.ex.gz',   # extension for Excitation names
                 txt='-',
                 verbose=False,
                 overlap=False,
                 minoverlap=0.02,
                 minrep=0.8,
                 comm=world,
    ):
        """
        Parameters
        ----------
        atoms: ase Atoms object
        Excitations: class
            Type of the excitation list object. The class object is
            initialized as::

                Excitations(atoms.get_calculator())

            or by reading form a file as::

                Excitations('filename', **exkwargs)

            The file is written by calling the method
            Excitations.write('filename').

            Excitations should work like a list of ex obejects, where:
                ex.get_dipole_me(form='v'):
                    gives the velocity form dipole matrix element in
                    units |e| * Angstrom
                ex.energy:
                    is the transition energy in Hartrees
        indices: list
        gsname: string
            name for ground state calculations
        exname: string
            name for excited state calculations
        delta: float
            Finite difference displacement in Angstrom.
        nfree: float
        directions:
        approximation: string
            Level of approximation used.
        observation: dict
            Polarization settings
        form: string
            Form of the dipole operator, 'v' for velocity form (default)
            and 'r' for length form.
        exkwargs: dict
            Arguments given to the Excitations objects in reading.
        exext: string
            Extension for filenames of Excitation lists.
        txt:
            Output stream
        verbose:
            Verbosity level of output
        overlap: bool or function
            Use wavefunction overlaps.
        minoverlap: float ord dict
            Minimal absolute overlap to consider. Defaults to 0.02 to avoid
            numerical garbage.
        minrep: float
            Minimal represention to consider derivative, defaults to 0.8
        """
        assert(nfree == 2)
        Vibrations.__init__(self, atoms, indices, gsname, delta, nfree)
        self.name = gsname + '-d%.3f' % delta
        if exname is None:
            exname = gsname
        self.exname = exname + '-d%.3f' % delta
        self.exext = exext

        if directions is None:
            self.directions = np.array([0, 1, 2])
        else:
            self.directions = np.array(directions)

        self.observation = observation
        self.exobj = Excitations
        self.exkwargs = exkwargs
        self.dipole_form = form

        self.timer = Timer()
        self.txt = convert_string_to_fd(txt)

        self.verbose = verbose
        self.overlap = overlap
        if not isinstance(minoverlap, dict):
            # assume it's a number
            self.minoverlap = {'orbitals': minoverlap,
                               'excitations': minoverlap}
        else:
            self.minoverlap = minoverlap
        self.minrep = minrep

        self.comm = comm

    @property
    def approximation(self):
        return self._approx

    @approximation.setter
    def approximation(self, value):
        self.set_approximation(value)

    @staticmethod
    def m2(z):
        return (z * z.conj()).real

    def log(self, message, pre='# ', end='\n'):
        if self.verbose:
            self.txt.write(pre + message + end)
            self.txt.flush()

    def run(self):
        if self.overlap:
            # XXXX stupid way to make a copy
            self.atoms.get_potential_energy()
            self.eq_calculator = self.atoms.get_calculator()
            fname = self.exname + '.eq.gpw'
            self.eq_calculator.write(fname, 'all')
            self.eq_calculator = self.eq_calculator.__class__(fname)
            self.eq_calculator.converge_wave_functions()
        Vibrations.run(self)

    def calculate(self, atoms, filename, fd):
        """Call ground and excited state calculation"""
        assert(atoms == self.atoms)  # XXX action required
        self.timer.start('Ground state')
        forces = self.atoms.get_forces()
        if rank == 0:
            pickle.dump(forces, fd, protocol=2)
            fd.close()
        if self.overlap:
            self.timer.start('Overlap')
            """Overlap is determined as

            ov_ij = int dr displaced*_i(r) eqilibrium_j(r)
            """
            ov_nn = self.overlap(self.atoms.get_calculator(),
                                 self.eq_calculator)
            if rank == 0:
                np.save(filename + '.ov', ov_nn)
            self.timer.stop('Overlap')
        self.timer.stop('Ground state')

        self.timer.start('Excitations')
        basename, _ = os.path.splitext(filename)
        excitations = self.exobj(
            self.atoms.get_calculator(), **self.exkwargs)
        excitations.write(basename + self.exext)
        self.timer.stop('Excitations')

    def init_parallel_read(self):
        """Initialize variables for parallel read"""
        rank = self.comm.rank
        self.ndof = 3 * len(self.indices)
        myn = -(-self.ndof // self.comm.size)  # ceil divide
        self.slize = s = slice(myn * rank, myn * (rank + 1))
        self.myindices = np.repeat(self.indices, 3)[s]
        self.myxyz = ('xyz' * len(self.indices))[s]
        self.myr = range(self.ndof)[s]
        self.mynd = len(self.myr)

    def read_excitations(self):
        """Read all finite difference excitations and select matching."""
        self.timer.start('read excitations')
        self.timer.start('really read')
        self.log('reading ' + self.exname + '.eq' + self.exext)
        ex0_object = self.exobj(self.exname + '.eq' + self.exext,
                                **self.exkwargs)
        self.timer.stop('really read')
        self.timer.start('index')
        matching = frozenset(ex0_object)
        self.timer.stop('index')

        def append(lst, exname, matching):
            self.timer.start('really read')
            self.log('reading ' + exname, end=' ')
            exo = self.exobj(exname, **self.exkwargs)
            lst.append(exo)
            self.timer.stop('really read')
            self.timer.start('index')
            matching = matching.intersection(exo)
            self.log('len={0}, matching={1}'.format(len(exo),
                                                    len(matching)), pre='')
            self.timer.stop('index')
            return matching

        exm_object_list = []
        exp_object_list = []
        for a, i in zip(self.myindices, self.myxyz):
            name = '%s.%d%s' % (self.exname, a, i)
            matching = append(exm_object_list,
                              name + '-' + self.exext, matching)
            matching = append(exp_object_list,
                              name + '+' + self.exext, matching)
        self.ndof = 3 * len(self.indices)
        self.nex = len(matching)
        self.timer.stop('read excitations')

        self.timer.start('select')

        def select(exl, matching):
            mlst = [ex for ex in exl if ex in matching]
            assert(len(mlst) == len(matching))
            return mlst
        ex0 = select(ex0_object, matching)
        exm = []
        exp = []
        r = 0
        for a, i in zip(self.myindices, self.myxyz):
            exm.append(select(exm_object_list[r], matching))
            exp.append(select(exp_object_list[r], matching))
            r += 1
        self.timer.stop('select')

        self.timer.start('me and energy')

        eu = u.Hartree
        self.ex0E_p = np.array([ex.energy * eu for ex in ex0])
        self.ex0m_pc = (np.array(
            [ex.get_dipole_me(form=self.dipole_form) for ex in ex0]) *
            u.Bohr)
        exmE_rp = []
        expE_rp = []
        exF_rp = []
        exmm_rpc = []
        expm_rpc = []
        r = 0
        for a, i in zip(self.myindices, self.myxyz):
            exmE_rp.append([em.energy for em in exm[r]])
            expE_rp.append([ep.energy for ep in exp[r]])
            exF_rp.append(
                [(em.energy - ep.energy)
                 for ep, em in zip(exp[r], exm[r])])
            exmm_rpc.append(
                [ex.get_dipole_me(form=self.dipole_form)
                 for ex in exm[r]])
            expm_rpc.append(
                [ex.get_dipole_me(form=self.dipole_form)
                 for ex in exp[r]])
            r += 1
        # indicees: r=coordinate, p=excitation
        # energies in eV
        self.exmE_rp = np.array(exmE_rp) * eu
        self.expE_rp = np.array(expE_rp) * eu
        # forces in eV / Angstrom
        self.exF_rp = np.array(exF_rp) * eu / 2 / self.delta
        # matrix elements in e * Angstrom
        self.exmm_rpc = np.array(exmm_rpc) * u.Bohr
        self.expm_rpc = np.array(expm_rpc) * u.Bohr

        self.timer.stop('me and energy')

    def read_excitations_overlap(self):
        """Read all finite difference excitations and wf overlaps.

        We assume that the wave function overlaps are determined as

        ov_ij = int dr displaced*_i(r) eqilibrium_j(r)
        """
        self.timer.start('read excitations')
        self.timer.start('read+rotate')
        self.log('reading ' + self.exname + '.eq' + self.exext)
        ex0 = self.exobj(self.exname + '.eq' + self.exext,
                         **self.exkwargs)
        rep0_p = np.ones((len(ex0)), dtype=float)

        def load(name, pm, rep0_p):
            self.log('reading ' + name + pm + self.exext)
            ex_p = self.exobj(name + pm + self.exext, **self.exkwargs)
            self.log('reading ' + name + pm + '.pckl.ov.npy')
            ov_nn = np.load(name + pm + '.pckl.ov.npy')
            # remove numerical garbage
            ov_nn = np.where(np.abs(ov_nn) > self.minoverlap['orbitals'],
                             ov_nn, 0)
            self.timer.start('ex overlap')
            ov_pp = ex_p.overlap(ov_nn, ex0)
            # remove numerical garbage
            ov_pp = np.where(np.abs(ov_pp) > self.minoverlap['excitations'],
                             ov_pp, 0)
            rep0_p *= (ov_pp.real**2 + ov_pp.imag**2).sum(axis=0)
            self.timer.stop('ex overlap')
            return ex_p, ov_pp

        def rotate(ex_p, ov_pp):
            e_p = np.array([ex.energy for ex in ex_p])
            m_pc = np.array(
                [ex.get_dipole_me(form=self.dipole_form) for ex in ex_p])
            r_pp = ov_pp.T
            return ((r_pp.real**2 + r_pp.imag**2).dot(e_p),
                    r_pp.dot(m_pc))

        exmE_rp = []
        expE_rp = []
        exF_rp = []
        exmm_rpc = []
        expm_rpc = []
        exdmdr_rpc = []
        for a, i in zip(self.myindices, self.myxyz):
            name = '%s.%d%s' % (self.exname, a, i)
            ex, ov = load(name, '-', rep0_p)
            exmE_p, exmm_pc = rotate(ex, ov)
            ex, ov = load(name, '+', rep0_p)
            expE_p, expm_pc = rotate(ex, ov)
            exmE_rp.append(exmE_p)
            expE_rp.append(expE_p)
            exF_rp.append(exmE_p - expE_p)
            exmm_rpc.append(exmm_pc)
            expm_rpc.append(expm_pc)
            exdmdr_rpc.append(expm_pc - exmm_pc)
        self.timer.stop('read+rotate')

        self.timer.start('me and energy')

        # select only excitations that are sufficiently represented
        self.comm.product(rep0_p)
        select = np.where(rep0_p > self.minrep)[0]

        eu = u.Hartree
        self.ex0E_p = np.array([ex.energy * eu for ex in ex0])[select]
        self.ex0m_pc = (np.array(
            [ex.get_dipole_me(form=self.dipole_form)
             for ex in ex0])[select] * u.Bohr)

        if len(self.myr):
            # indicees: r=coordinate, p=excitation
            # energies in eV
            self.exmE_rp = np.array(exmE_rp)[:,select] * eu
            ##print(len(select), np.array(exmE_rp).shape, self.exmE_rp.shape)
            self.expE_rp = np.array(expE_rp)[:,select] * eu
            # forces in eV / Angstrom
            self.exF_rp = np.array(exF_rp)[:,select] * eu / 2 / self.delta
            # matrix elements in e * Angstrom
            self.exmm_rpc = np.array(exmm_rpc)[:,select,:] * u.Bohr
            self.expm_rpc = np.array(expm_rpc)[:,select,:] * u.Bohr
            # matrix element derivatives in e
            self.exdmdr_rpc = (np.array(exdmdr_rpc)[:,select,:] *
                               u.Bohr / 2 / self.delta)
        else:
            # did not read
            self.exmE_rp = self.expE_rp = self.exF_rp = np.empty((0))
            self.exmm_rpc = self.expm_rpc = self.exdmdr_rpc = np.empty((0))

        self.timer.stop('me and energy')
        self.timer.stop('read excitations')

    def read(self, method='standard', direction='central'):
        """Read data from a pre-performed calculation."""

        self.timer.start('read')
        self.timer.start('vibrations')
        Vibrations.read(self, method, direction)
        # we now have:
        # self.H     : Hessian matrix
        # self.im    : 1./sqrt(masses)
        # self.modes : Eigenmodes of the mass weighted Hessian
        self.om_Q = self.hnu.real    # energies in eV
        self.om_v = self.om_Q
        # pre-factors for one vibrational excitation
        with np.errstate(divide='ignore'):
            self.vib01_Q = np.where(self.om_Q > 0,
                                    1. / np.sqrt(2 * self.om_Q), 0)
        # -> sqrt(amu) * Angstrom
        self.vib01_Q *= np.sqrt(u.Ha * u._me / u._amu) * u.Bohr
        self.timer.stop('vibrations')


        self.timer.start('excitations')
        self.init_parallel_read()
        if not hasattr(self, 'ex0E_p'):
            if self.overlap:
                self.read_excitations_overlap()
            else:
                self.read_excitations()
        self.timer.stop('excitations')
        self.timer.stop('read')

    def me_Qcc(self, omega, gamma):
        """Full matrix element

        Returns
        -------
        Matrix element in e^2 Angstrom^2 / eV
        """
        # Angstrom^2 / sqrt(amu)
        elme_Qcc = self.electronic_me_Qcc(omega, gamma)
        # Angstrom^3 -> e^2 Angstrom^2 / eV
        elme_Qcc /= u.Hartree * u.Bohr  # e^2 Angstrom / eV / sqrt(amu)
        return elme_Qcc * self.vib01_Q[:, None, None]

    def intensity(self, omega, gamma=0.1):
        """Raman intensity

        Returns
        -------
        unit e^4 Angstrom^4 / eV^2
        """
        m2 = ResonantRaman.m2
        alpha_Qcc = self.me_Qcc(omega, gamma)
        if not self.observation:  # XXXX remove
            """Simple sum, maybe too simple"""
            return m2(alpha_Qcc).sum(axis=1).sum(axis=1)
        # XXX enable when appropriate
        #        if self.observation['orientation'].lower() != 'random':
        #            raise NotImplementedError('not yet')

        # random orientation of the molecular frame
        # Woodward & Long,
        # Guthmuller, J. J. Chem. Phys. 2016, 144 (6), 64106
        alpha2_r, gamma2_r, delta2_r = self._invariants(alpha_Qcc)

        if self.observation['geometry'] == '-Z(XX)Z':  # Porto's notation
            return (45 * alpha2_r + 5 * delta2_r + 4 * gamma2_r) / 45.
        elif self.observation['geometry'] == '-Z(XY)Z':  # Porto's notation
            return gamma2_r / 15.
        elif self.observation['scattered'] == 'Z':
            # scattered light in direction of incoming light
            return (45 * alpha2_r + 5 * delta2_r + 7 * gamma2_r) / 45.
        elif self.observation['scattered'] == 'parallel':
            # scattered light perendicular and
            # polarization in plane
            return 6 * gamma2_r / 45.
        elif self.observation['scattered'] == 'perpendicular':
            # scattered light perendicular and
            # polarization out of plane
            return (45 * alpha2_r + 5 * delta2_r + 7 * gamma2_r) / 45.
        else:
            raise NotImplementedError

    def _invariants(self, alpha_Qcc):
        """Raman invariants

        Parameter
        ---------
        alpha_Qcc: array
           Matrix element or polarizability tensor

        Reference
        ---------
        Derek A. Long, The Raman Effect, ISBN 0-471-49028-8

        Returns
        -------
        mean polarizability, anisotropy, asymmetric anisotropy
        """
        m2 = ResonantRaman.m2
        alpha2_r = m2(alpha_Qcc[:, 0, 0] + alpha_Qcc[:, 1, 1] +
                      alpha_Qcc[:, 2, 2]) / 9.
        delta2_r = 3 / 4. * (
            m2(alpha_Qcc[:, 0, 1] - alpha_Qcc[:, 1, 0]) +
            m2(alpha_Qcc[:, 0, 2] - alpha_Qcc[:, 2, 0]) +
            m2(alpha_Qcc[:, 1, 2] - alpha_Qcc[:, 2, 1]))
        gamma2_r = (3 / 4. * (m2(alpha_Qcc[:, 0, 1] + alpha_Qcc[:, 1, 0]) +
                              m2(alpha_Qcc[:, 0, 2] + alpha_Qcc[:, 2, 0]) +
                              m2(alpha_Qcc[:, 1, 2] + alpha_Qcc[:, 2, 1])) +
                    (m2(alpha_Qcc[:, 0, 0] - alpha_Qcc[:, 1, 1]) +
                     m2(alpha_Qcc[:, 0, 0] - alpha_Qcc[:, 2, 2]) +
                     m2(alpha_Qcc[:, 1, 1] - alpha_Qcc[:, 2, 2])) / 2)
        return alpha2_r, gamma2_r, delta2_r

    def absolute_intensity(self, omega, gamma=0.1, delta=0):
        """Absolute Raman intensity or Raman scattering factor

        Parameter
        ---------
        omega: float
           incoming laser energy, unit eV
        gamma: float
           width (imaginary energy), unit eV
        delta: float
           pre-factor for asymmetric anisotropy, default 0

        References
        ----------
        Porezag and Pederson, PRB 54 (1996) 7830-7836 (delta=0)
        Baiardi and Barone, JCTC 11 (2015) 3267-3280 (delta=5)

        Returns
        -------
        raman intensity, unit Ang**4/amu
        """

        alpha2_r, gamma2_r, delta2_r = self._invariants(
            self.electronic_me_Qcc(omega, gamma))
        return 45 * alpha2_r + delta * delta2_r + 7 * gamma2_r

    def get_cross_sections(self, omega, gamma=0.1):
        """Returns Raman cross sections for each vibration."""
        I_v = self.intensity(omega, gamma)
        pre = 1. / 16 / np.pi**2 / u._eps0**2 / u._c**4
        # frequency of scattered light
        omS_v = omega - self.om_v
        return pre * omega * omS_v**3 * I_v

    def get_spectrum(self, omega, gamma=0.1,
                     start=None, end=None, npts=None, width=20,
                     type='Gaussian', method='standard', direction='central',
                     intensity_unit='????', normalize=False):
        """Get resonant Raman spectrum.

        The method returns wavenumbers in cm^-1 with corresponding
        Raman cross section.
        Start and end point, and width of the Gaussian/Lorentzian should
        be given in cm^-1.
        """

        self.type = type.lower()
        assert self.type in ['gaussian', 'lorentzian']

        frequencies = self.get_frequencies(method, direction).real
        intensities = self.get_cross_sections(omega, gamma)
        if width is None:
            return [frequencies, intensities]

        if start is None:
            start = min(self.om_v) / u.invcm - 3 * width
        if end is None:
            end = max(self.om_v) / u.invcm + 3 * width

        if not npts:
            npts = int((end - start) / width * 10 + 1)

        prefactor = 1
        if self.type == 'lorentzian':
            intensities = intensities * width * np.pi / 2.
            if normalize:
                prefactor = 2. / width / np.pi
        else:
            sigma = width / 2. / np.sqrt(2. * np.log(2.))
            if normalize:
                prefactor = 1. / sigma / np.sqrt(2 * np.pi)
        # Make array with spectrum data
        spectrum = np.empty(npts)
        energies = np.linspace(start, end, npts)
        for i, energy in enumerate(energies):
            energies[i] = energy
            if self.type == 'lorentzian':
                spectrum[i] = (intensities * 0.5 * width / np.pi /
                               ((frequencies - energy)**2 +
                                0.25 * width**2)).sum()
            else:
                spectrum[i] = (intensities *
                               np.exp(-(frequencies - energy)**2 /
                                      2. / sigma**2)).sum()
        return [energies, prefactor * spectrum]

    def write_spectrum(self, omega, gamma,
                       out='resonant-raman-spectra.dat',
                       start=200, end=4000,
                       npts=None, width=10,
                       type='Gaussian', method='standard',
                       direction='central'):
        """Write out spectrum to file.

        Start and end
        point, and width of the Gaussian/Lorentzian should be given
        in cm^-1."""
        energies, spectrum = self.get_spectrum(omega, gamma,
                                               start, end, npts, width,
                                               type, method, direction)

        # Write out spectrum in file. First column is absolute intensities.
        outdata = np.empty([len(energies), 3])
        outdata.T[0] = energies
        outdata.T[1] = spectrum
        fd = paropen(out, 'w')
        fd.write('# Resonant Raman spectrum\n')
        if hasattr(self, '_approx'):
            fd.write('# approximation: {0}\n'.format(self._approx))
        for key in self.observation:
            fd.write('# {0}: {1}\n'.format(key, self.observation[key]))
        fd.write('# omega={0:g} eV, gamma={1:g} eV\n'.format(omega, gamma))
        if width is not None:
            fd.write('# %s folded, width=%g cm^-1\n' % (type.title(), width))
        fd.write('# [cm^-1]  [a.u.]\n')

        for row in outdata:
            fd.write('%.3f  %15.5g\n' %
                     (row[0], row[1]))
        fd.close()

    def summary(self, omega=0, gamma=0,
                method='standard', direction='central',
                log=sys.stdout):
        """Print summary for given omega [eV]"""
        hnu = self.get_energies(method, direction)
        intensities = self.absolute_intensity(omega, gamma)
        te = int(np.log10(intensities.max())) - 2
        scale = 10**(-te)
        if not te:
            ts = ''
        elif te > -2 and te < 3:
            ts = str(10**te)
        else:
            ts = '10^{0}'.format(te)

        if isinstance(log, basestring):
            log = paropen(log, 'a')

        parprint('-------------------------------------', file=log)
        parprint(' excitation at ' + str(omega) + ' eV', file=log)
        parprint(' gamma ' + str(gamma) + ' eV', file=log)
        parprint(' method:', self.method, file=log)
        parprint(' approximation:', self.approximation, file=log)
        parprint(' Mode    Frequency        Intensity', file=log)
        parprint('  #    meV     cm^-1      [{0}A^4/amu]'.format(ts), file=log)
        parprint('-------------------------------------', file=log)
        for n, e in enumerate(hnu):
            if e.imag != 0:
                c = 'i'
                e = e.imag
            else:
                c = ' '
                e = e.real
            parprint('%3d %6.1f%s  %7.1f%s  %9.2f' %
                     (n, 1000 * e, c, e / u.invcm, c, intensities[n] * scale),
                     file=log)
        parprint('-------------------------------------', file=log)
        parprint('Zero-point energy: %.3f eV' % self.get_zero_point_energy(),
                 file=log)

    def __del__(self):
        self.timer.write(self.txt)
예제 #22
0
파일: timing.py 프로젝트: thonmaker/gpaw
 def start(self, name):
     Timer.start(self, name)
     self.tau_timers[name] = self.pytau.profileTimer(name)
     self.pytau.start(self.tau_timers[name])
예제 #23
0
class HybridXC(HybridXCBase):
    orbital_dependent = True

    def __init__(self, name, hybrid=None, xc=None,
                 alpha=None,
                 gamma_point=1,
                 method='standard',
                 bandstructure=False,
                 logfilename='-', bands=None,
                 fcut=1e-10,
                 molecule=False,
                 qstride=1,
                 world=None):
        """Mix standard functionals with exact exchange.

        name: str
            Name of functional: EXX, PBE0, HSE03, HSE06
        hybrid: float
            Fraction of exact exchange.
        xc: str or XCFunctional object
            Standard DFT functional with scaled down exchange.
        method: str
            Use 'standard' standard formula and 'acdf for
            adiabatic-connection dissipation fluctuation formula.
        alpha: float
            XXX describe
        gamma_point: bool
            0: Skip k2-k1=0 interactions.
            1: Use the alpha method.
            2: Integrate the gamma point.
        bandstructure: bool
            Calculate bandstructure instead of just the total energy.
        bands: list of int
            List of bands to calculate bandstructure for.  Default is
            all bands.
        molecule: bool
            Decouple electrostatic interactions between periodically
            repeated images.
        fcut: float
            Threshold for empty band.
        """

        self.alpha = alpha
        self.fcut = fcut

        self.gamma_point = gamma_point
        self.method = method
        self.bandstructure = bandstructure
        self.bands = bands

        self.fd = logfilename
        self.write_timing_information = True

        HybridXCBase.__init__(self, name, hybrid, xc)

        # EXX energies:
        self.exx = None  # total
        self.evv = None  # valence-valence (pseudo part)
        self.evvacdf = None  # valence-valence (pseudo part)
        self.devv = None  # valence-valence (PAW correction)
        self.evc = None  # valence-core
        self.ecc = None  # core-core

        self.exx_skn = None  # bandstructure

        self.qlatest = None

        if world is None:
            world = mpi.world
        self.world = world

        self.molecule = molecule
        
        if isinstance(qstride, int):
            qstride = [qstride] * 3
        self.qstride_c = np.asarray(qstride)
        
        self.timer = Timer()

    def log(self, *args, **kwargs):
        prnt(file=self.fd, *args, **kwargs)
        self.fd.flush()

    def calculate_radial(self, rgd, n_sLg, Y_L, v_sg,
                         dndr_sLg=None, rnablaY_Lv=None,
                         tau_sg=None, dedtau_sg=None):
        return self.xc.calculate_radial(rgd, n_sLg, Y_L, v_sg,
                                        dndr_sLg, rnablaY_Lv)
    
    def calculate_paw_correction(self, setup, D_sp, dEdD_sp=None,
                                 addcoredensity=True, a=None):
        return self.xc.calculate_paw_correction(setup, D_sp, dEdD_sp,
                                 addcoredensity, a)
    
    def initialize(self, dens, ham, wfs, occupations):
        assert wfs.bd.comm.size == 1

        self.xc.initialize(dens, ham, wfs, occupations)

        self.dens = dens
        self.wfs = wfs

        # Make a k-point descriptor that is not distributed
        # (self.kd.comm is serial_comm):
        self.kd = wfs.kd.copy()

        self.fd = logfile(self.fd, self.world.rank)

        wfs.initialize_wave_functions_from_restart_file()

    def set_positions(self, spos_ac):
        self.spos_ac = spos_ac

    def calculate(self, gd, n_sg, v_sg=None, e_g=None):
        # Normal XC contribution:
        exc = self.xc.calculate(gd, n_sg, v_sg, e_g)

        # Add EXX contribution:
        return exc + self.exx * self.hybrid

    def calculate_exx(self):
        """Non-selfconsistent calculation."""

        self.timer.start('EXX')
        self.timer.start('Initialization')
        
        kd = self.kd
        wfs = self.wfs

        if fftw.FFTPlan is fftw.NumpyFFTPlan:
            self.log('NOT USING FFTW !!')

        self.log('Spins:', self.wfs.nspins)

        W = max(1, self.wfs.kd.comm.size // self.wfs.nspins)
        # Are the k-points distributed?
        kparallel = (W > 1)

        # Find number of occupied bands:
        self.nocc_sk = np.zeros((self.wfs.nspins, kd.nibzkpts), int)
        for kpt in self.wfs.kpt_u:
            for n, f in enumerate(kpt.f_n):
                if abs(f) < self.fcut:
                    self.nocc_sk[kpt.s, kpt.k] = n
                    break
            else:
                self.nocc_sk[kpt.s, kpt.k] = self.wfs.bd.nbands
        self.wfs.kd.comm.sum(self.nocc_sk)

        noccmin = self.nocc_sk.min()
        noccmax = self.nocc_sk.max()
        self.log('Number of occupied bands (min, max): %d, %d' %
                 (noccmin, noccmax))
        
        self.log('Number of valence electrons:', self.wfs.setups.nvalence)

        if self.bandstructure:
            self.log('Calculating eigenvalue shifts.')

            # allocate array for eigenvalue shifts:
            self.exx_skn = np.zeros((self.wfs.nspins,
                                     kd.nibzkpts,
                                     self.wfs.bd.nbands))

            if self.bands is None:
                noccmax = self.wfs.bd.nbands
            else:
                noccmax = max(max(self.bands) + 1, noccmax)

        N_c = self.kd.N_c

        vol = wfs.gd.dv * wfs.gd.N_c.prod()
        if self.alpha is None:
            alpha = 6 * vol**(2 / 3.0) / pi**2
        else:
            alpha = self.alpha
        if self.gamma_point == 1:
            if alpha == 0.0:
                qvol = (2*np.pi)**3 / vol / N_c.prod()
                self.gamma = 4*np.pi * (3*qvol / (4*np.pi))**(1/3.) / qvol
            else:
                self.gamma = self.calculate_gamma(vol, alpha)
        else:
            kcell_cv = wfs.gd.cell_cv.copy()
            kcell_cv[0] *= N_c[0]
            kcell_cv[1] *= N_c[1]
            kcell_cv[2] *= N_c[2]
            self.gamma = madelung(kcell_cv) * vol * N_c.prod() / (4 * np.pi)

        self.log('Value of alpha parameter: %.3f Bohr^2' % alpha)
        self.log('Value of gamma parameter: %.3f Bohr^2' % self.gamma)
            
        # Construct all possible q=k2-k1 vectors:
        Nq_c = (N_c - 1) // self.qstride_c
        i_qc = np.indices(Nq_c * 2 + 1, float).transpose(
            (1, 2, 3, 0)).reshape((-1, 3))
        self.bzq_qc = (i_qc - Nq_c) / N_c * self.qstride_c
        self.q0 = ((Nq_c * 2 + 1).prod() - 1) // 2  # index of q=(0,0,0)
        assert not self.bzq_qc[self.q0].any()

        # Count number of pairs for each q-vector:
        self.npairs_q = np.zeros(len(self.bzq_qc), int)
        for s in range(kd.nspins):
            for k1 in range(kd.nibzkpts):
                for k2 in range(kd.nibzkpts):
                    for K2, q, n1_n, n2 in self.indices(s, k1, k2):
                        self.npairs_q[q] += len(n1_n)

        self.npairs0 = self.npairs_q.sum()  # total number of pairs

        self.log('Number of pairs:', self.npairs0)

        # Distribute q-vectors to Q processors:
        Q = self.world.size // self.wfs.kd.comm.size
        myrank = self.world.rank // self.wfs.kd.comm.size
        rank = 0
        N = 0
        myq = []
        nq = 0
        for q, n in enumerate(self.npairs_q):
            if n > 0:
                nq += 1
                if rank == myrank:
                    myq.append(q)
            N += n
            if N >= (rank + 1.0) * self.npairs0 / Q:
                rank += 1

        assert len(myq) > 0, 'Too few q-vectors for too many processes!'
        self.bzq_qc = self.bzq_qc[myq]
        try:
            self.q0 = myq.index(self.q0)
        except ValueError:
            self.q0 = None

        self.log('%d x %d x %d k-points' % tuple(self.kd.N_c))
        self.log('Distributing %d IBZ k-points over %d process(es).' %
                 (kd.nibzkpts, self.wfs.kd.comm.size))
        self.log('Distributing %d q-vectors over %d process(es).' % (nq, Q))

        # q-point descriptor for my q-vectors:
        qd = KPointDescriptor(self.bzq_qc)

        # Plane-wave descriptor for all wave-functions:
        self.pd = PWDescriptor(wfs.pd.ecut, wfs.gd,
                               dtype=wfs.pd.dtype, kd=kd)

        # Plane-wave descriptor pair-densities:
        self.pd2 = PWDescriptor(self.dens.pd2.ecut, self.dens.gd,
                                dtype=wfs.dtype, kd=qd)

        self.log('Cutoff energies:')
        self.log('    Wave functions:       %10.3f eV' %
                 (self.pd.ecut * Hartree))
        self.log('    Density:              %10.3f eV' %
                 (self.pd2.ecut * Hartree))

        # Calculate 1/|G+q|^2 with special treatment of |G+q|=0:
        G2_qG = self.pd2.G2_qG
        if self.q0 is None:
            if self.omega is None:
                self.iG2_qG = [1.0 / G2_G for G2_G in G2_qG]
            else:
                self.iG2_qG = [(1.0 / G2_G *
                                (1 - np.exp(-G2_G / (4 * self.omega**2))))
                               for G2_G in G2_qG]
        else:
            G2_qG[self.q0][0] = 117.0  # avoid division by zero
            if self.omega is None:
                self.iG2_qG = [1.0 / G2_G for G2_G in G2_qG]
                self.iG2_qG[self.q0][0] = self.gamma
            else:
                self.iG2_qG = [(1.0 / G2_G *
                                (1 - np.exp(-G2_G / (4 * self.omega**2))))
                               for G2_G in G2_qG]
                self.iG2_qG[self.q0][0] = 1 / (4 * self.omega**2)
            G2_qG[self.q0][0] = 0.0  # restore correct value

        # Compensation charges:
        self.ghat = PWLFC([setup.ghat_l for setup in wfs.setups], self.pd2)
        self.ghat.set_positions(self.spos_ac)

        if self.molecule:
            self.initialize_gaussian()
            self.log('Value of beta parameter: %.3f 1/Bohr^2' % self.beta)
            
        self.timer.stop('Initialization')
        
        # Ready ... set ... go:
        self.t0 = time()
        self.npairs = 0
        self.evv = 0.0
        self.evvacdf = 0.0
        for s in range(self.wfs.nspins):
            kpt1_q = [KPoint(self.wfs, noccmax).initialize(kpt)
                      for kpt in self.wfs.kpt_u if kpt.s == s]
            kpt2_q = kpt1_q[:]

            if len(kpt1_q) == 0:
                # No s-spins on this CPU:
                continue

            # Send and receive ranks:
            srank = self.wfs.kd.get_rank_and_index(
                s, (kpt1_q[0].k - 1) % kd.nibzkpts)[0]
            rrank = self.wfs.kd.get_rank_and_index(
                s, (kpt1_q[-1].k + 1) % kd.nibzkpts)[0]

            # Shift k-points kd.nibzkpts - 1 times:
            for i in range(kd.nibzkpts):
                if i < kd.nibzkpts - 1:
                    if kparallel:
                        kpt = kpt2_q[-1].next(self.wfs)
                        kpt.start_receiving(rrank)
                        kpt2_q[0].start_sending(srank)
                    else:
                        kpt = kpt2_q[0]

                self.timer.start('Calculate')
                for kpt1, kpt2 in zip(kpt1_q, kpt2_q):
                    # Loop over all k-points that k2 can be mapped to:
                    for K2, q, n1_n, n2 in self.indices(s, kpt1.k, kpt2.k):
                        self.apply(K2, q, kpt1, kpt2, n1_n, n2)
                self.timer.stop('Calculate')

                if i < kd.nibzkpts - 1:
                    self.timer.start('Wait')
                    if kparallel:
                        kpt.wait()
                        kpt2_q[0].wait()
                    self.timer.stop('Wait')
                    kpt2_q.pop(0)
                    kpt2_q.append(kpt)

        self.evv = self.world.sum(self.evv)
        self.evvacdf = self.world.sum(self.evvacdf)
        self.calculate_exx_paw_correction()
        
        if self.method == 'standard':
            self.exx = self.evv + self.devv + self.evc + self.ecc
        elif self.method == 'acdf':
            self.exx = self.evvacdf + self.devv + self.evc + self.ecc
        else:
            1 / 0

        self.log('Exact exchange energy:')
        for txt, e in [
            ('core-core', self.ecc),
            ('valence-core', self.evc),
            ('valence-valence (pseudo, acdf)', self.evvacdf),
            ('valence-valence (pseudo, standard)', self.evv),
            ('valence-valence (correction)', self.devv),
            ('total (%s)' % self.method, self.exx)]:
            self.log('    %-36s %14.6f eV' % (txt + ':', e * Hartree))

        self.log('Total time: %10.3f seconds' % (time() - self.t0))

        self.npairs = self.world.sum(self.npairs)
        assert self.npairs == self.npairs0
        
        self.timer.stop('EXX')
        self.timer.write(self.fd)

    def calculate_gamma(self, vol, alpha):
        if self.molecule:
            return 0.0

        N_c = self.kd.N_c
        offset_c = (N_c + 1) % 2 * 0.5 / N_c
        bzq_qc = monkhorst_pack(N_c) + offset_c
        qd = KPointDescriptor(bzq_qc)
        pd = PWDescriptor(self.wfs.pd.ecut, self.wfs.gd, kd=qd)
        gamma = (vol / (2 * pi)**2 * sqrt(pi / alpha) *
                 self.kd.nbzkpts)
        for G2_G in pd.G2_qG:
            if G2_G[0] < 1e-7:
                G2_G = G2_G[1:]
            gamma -= np.dot(np.exp(-alpha * G2_G), G2_G**-1)
        return gamma / self.qstride_c.prod()

    def indices(self, s, k1, k2):
        """Generator for (K2, q, n1, n2) indices for (k1, k2) pair.

        s: int
            Spin index.
        k1: int
            Index of k-point in the IBZ.
        k2: int
            Index of k-point in the IBZ.

        Returns (K, q, n1_n, n2), where K then index of the k-point in
        the BZ that k2 is mapped to, q is the index of the q-vector
        between K and k1, and n1_n is a list of bands that should be
        combined with band n2."""

        for K, k in enumerate(self.kd.bz2ibz_k):
            if k == k2:
                for K, q, n1_n, n2 in self._indices(s, k1, k2, K):
                    yield K, q, n1_n, n2
            
    def _indices(self, s, k1, k2, K2):
        k1_c = self.kd.ibzk_kc[k1]
        k2_c = self.kd.bzk_kc[K2]
        q_c = k2_c - k1_c
        q = abs(self.bzq_qc - q_c).sum(1).argmin()
        if abs(self.bzq_qc[q] - q_c).sum() > 1e-7:
            return

        if self.gamma_point == 0 and q == self.q0:
            return

        nocc1 = self.nocc_sk[s, k1]
        nocc2 = self.nocc_sk[s, k2]

        # Is k2 in the IBZ?
        is_ibz2 = (self.kd.ibz2bz_k[k2] == K2)

        for n2 in range(self.wfs.bd.nbands):
            # Find range of n1's (from n1a to n1b-1):
            if is_ibz2:
                # We get this combination twice, so let's only do half:
                if k1 >= k2:
                    n1a = n2
                else:
                    n1a = n2 + 1
            else:
                n1a = 0

            n1b = self.wfs.bd.nbands

            if self.bandstructure:
                if n2 >= nocc2:
                    n1b = min(n1b, nocc1)
            else:
                if n2 >= nocc2:
                    break
                n1b = min(n1b, nocc1)

            if self.bands is not None:
                assert self.bandstructure
                n1_n = []
                for n1 in range(n1a, n1b):
                    if (n1 in self.bands and n2 < nocc2 or
                        is_ibz2 and n2 in self.bands and n1 < nocc1):
                        n1_n.append(n1)
                n1_n = np.array(n1_n)
            else:
                n1_n = np.arange(n1a, n1b)

            if len(n1_n) == 0:
                continue

            yield K2, q, n1_n, n2

    def apply(self, K2, q, kpt1, kpt2, n1_n, n2):
        k20_c = self.kd.ibzk_kc[kpt2.k]
        k2_c = self.kd.bzk_kc[K2]

        if k2_c.any():
            self.timer.start('Initialize plane waves')
            eik2r_R = self.wfs.gd.plane_wave(k2_c)
            eik20r_R = self.wfs.gd.plane_wave(k20_c)
            self.timer.stop('Initialize plane waves')
        else:
            eik2r_R = 1.0
            eik20r_R = 1.0

        w1 = self.kd.weight_k[kpt1.k]
        w2 = self.kd.weight_k[kpt2.k]

        # Is k2 in the 1. BZ?
        is_ibz2 = (self.kd.ibz2bz_k[kpt2.k] == K2)

        e_n = self.calculate_interaction(n1_n, n2, kpt1, kpt2, q, K2,
                                         eik20r_R, eik2r_R,
                                         is_ibz2)

        e_n *= 1.0 / self.kd.nbzkpts / self.wfs.nspins * self.qstride_c.prod()
        
        if q == self.q0:
            e_n[n1_n == n2] *= 0.5

        f1_n = kpt1.f_n[n1_n]
        eps1_n = kpt1.eps_n[n1_n]
        f2 = kpt2.f_n[n2]
        eps2 = kpt2.eps_n[n2]

        s_n = np.sign(eps2 - eps1_n)

        evv = (f1_n * f2 * e_n).sum()
        evvacdf = 0.5 * (f1_n * (1 - s_n) * e_n +
                         f2 * (1 + s_n) * e_n).sum()
        self.evv += evv * w1
        self.evvacdf += evvacdf * w1
        if is_ibz2:
            self.evv += evv * w2
            self.evvacdf += evvacdf * w2

        if self.bandstructure:
            x = self.wfs.nspins
            self.exx_skn[kpt1.s, kpt1.k, n1_n] += x * f2 * e_n
            if is_ibz2:
                self.exx_skn[kpt2.s, kpt2.k, n2] += x * np.dot(f1_n, e_n)

    def calculate_interaction(self, n1_n, n2, kpt1, kpt2, q, k,
                              eik20r_R, eik2r_R, is_ibz2):
        """Calculate Coulomb interactions.

        For all n1 in the n1_n list, calculate interaction with n2."""

        # number of plane waves:
        ng1 = self.wfs.ng_k[kpt1.k]
        ng2 = self.wfs.ng_k[kpt2.k]

        # Transform to real space and apply symmetry operation:
        self.timer.start('IFFT1')
        if is_ibz2:
            u2_R = self.pd.ifft(kpt2.psit_nG[n2, :ng2], kpt2.k)
        else:
            psit2_R = self.pd.ifft(kpt2.psit_nG[n2, :ng2], kpt2.k) * eik20r_R
            self.timer.start('Symmetry transform')
            u2_R = self.kd.transform_wave_function(psit2_R, k) / eik2r_R
            self.timer.stop()
        self.timer.stop()

        # Calculate pair densities:
        nt_nG = self.pd2.zeros(len(n1_n), q=q)
        for n1, nt_G in zip(n1_n, nt_nG):
            self.timer.start('IFFT2')
            u1_R = self.pd.ifft(kpt1.psit_nG[n1, :ng1], kpt1.k)
            self.timer.stop()
            nt_R = u1_R.conj() * u2_R
            self.timer.start('FFT')
            nt_G[:] = self.pd2.fft(nt_R, q)
            self.timer.stop()
        
        s = self.kd.sym_k[k]
        time_reversal = self.kd.time_reversal_k[k]
        k2_c = self.kd.ibzk_kc[kpt2.k]

        self.timer.start('Compensation charges')
        Q_anL = {}  # coefficients for shape functions
        for a, P1_ni in kpt1.P_ani.items():
            P1_ni = P1_ni[n1_n]

            if is_ibz2:
                P2_i = kpt2.P_ani[a][n2]
            else:
                b = self.kd.symmetry.a_sa[s, a]
                S_c = (np.dot(self.spos_ac[a], self.kd.symmetry.op_scc[s]) -
                       self.spos_ac[b])
                assert abs(S_c.round() - S_c).max() < 1e-5
                if self.ghat.dtype == complex:
                    x = np.exp(2j * pi * np.dot(k2_c, S_c))
                else:
                    x = 1.0
                P2_i = np.dot(self.wfs.setups[a].R_sii[s],
                              kpt2.P_ani[b][n2]) * x
                if time_reversal:
                    P2_i = P2_i.conj()

            D_np = []
            for P1_i in P1_ni:
                D_ii = np.outer(P1_i.conj(), P2_i)
                D_np.append(pack(D_ii))
            Q_anL[a] = np.dot(D_np, self.wfs.setups[a].Delta_pL)
            
        self.timer.start('Expand')
        if q != self.qlatest:
            self.f_IG = self.ghat.expand(q)
            self.qlatest = q
        self.timer.stop('Expand')

        # Add compensation charges:
        self.ghat.add(nt_nG, Q_anL, q, self.f_IG)
        self.timer.stop('Compensation charges')

        if self.molecule and n2 in n1_n:
            nn = (n1_n == n2).nonzero()[0][0]
            nt_nG[nn] -= self.ngauss_G
        else:
            nn = None
            
        iG2_G = self.iG2_qG[q]
        
        # Calculate energies:
        e_n = np.empty(len(n1_n))
        for n, nt_G in enumerate(nt_nG):
            e_n[n] = -4 * pi * np.real(self.pd2.integrate(nt_G, nt_G * iG2_G))
            self.npairs += 1
        
        if nn is not None:
            e_n[nn] -= 2 * (self.pd2.integrate(nt_nG[nn], self.vgauss_G) +
                            (self.beta / 2 / pi)**0.5)

        if self.write_timing_information:
            t = (time() - self.t0) / len(n1_n)
            self.log('Time for first pair-density: %10.3f seconds' % t)
            self.log('Estimated total time:        %10.3f seconds' %
                     (t * self.npairs0 / self.world.size))
            self.write_timing_information = False

        return e_n

    def calculate_exx_paw_correction(self):
        self.timer.start('PAW correction')
        self.devv = 0.0
        self.evc = 0.0
        self.ecc = 0.0
                         
        deg = 2 // self.wfs.nspins  # spin degeneracy
        for a, D_sp in self.dens.D_asp.items():
            setup = self.wfs.setups[a]
            for D_p in D_sp:
                D_ii = unpack2(D_p)
                ni = len(D_ii)

                for i1 in range(ni):
                    for i2 in range(ni):
                        A = 0.0
                        for i3 in range(ni):
                            p13 = packed_index(i1, i3, ni)
                            for i4 in range(ni):
                                p24 = packed_index(i2, i4, ni)
                                A += setup.M_pp[p13, p24] * D_ii[i3, i4]
                        self.devv -= D_ii[i1, i2] * A / deg

                self.evc -= np.dot(D_p, setup.X_p)
            self.ecc += setup.ExxC

        if not self.bandstructure:
            self.timer.stop('PAW correction')
            return

        Q = self.world.size // self.wfs.kd.comm.size
        self.exx_skn *= Q
        for kpt in self.wfs.kpt_u:
            for a, D_sp in self.dens.D_asp.items():
                setup = self.wfs.setups[a]
                for D_p in D_sp:
                    D_ii = unpack2(D_p)
                    ni = len(D_ii)
                    P_ni = kpt.P_ani[a]
                    for i1 in range(ni):
                        for i2 in range(ni):
                            A = 0.0
                            for i3 in range(ni):
                                p13 = packed_index(i1, i3, ni)
                                for i4 in range(ni):
                                    p24 = packed_index(i2, i4, ni)
                                    A += setup.M_pp[p13, p24] * D_ii[i3, i4]
                            self.exx_skn[kpt.s, kpt.k] -= \
                                (A * P_ni[:, i1].conj() * P_ni[:, i2]).real
                            p12 = packed_index(i1, i2, ni)
                            self.exx_skn[kpt.s, kpt.k] -= \
                                (P_ni[:, i1].conj() * setup.X_p[p12] *
                                 P_ni[:, i2]).real / self.wfs.nspins

        self.world.sum(self.exx_skn)
        self.exx_skn *= self.hybrid / Q
        self.timer.stop('PAW correction')
    
    def initialize_gaussian(self):
        """Calculate gaussian compensation charge and its potential.

        Used to decouple electrostatic interactions between
        periodically repeated images for molecular calculations.

        Charge containing one electron::

            (beta/pi)^(3/2)*exp(-beta*r^2),

        its Fourier transform::

            exp(-G^2/(4*beta)),

        and its potential::

            erf(beta^0.5*r)/r.
        """

        gd = self.wfs.gd

        # Set exponent of exp-function to -19 on the boundary:
        self.beta = 4 * 19 * (gd.icell_cv**2).sum(1).max()

        # Calculate gaussian:
        G_Gv = self.pd2.get_reciprocal_vectors()
        G2_G = self.pd2.G2_qG[0]
        C_v = gd.cell_cv.sum(0) / 2  # center of cell
        self.ngauss_G = np.exp(-1.0 / (4 * self.beta) * G2_G +
                                1j * np.dot(G_Gv, C_v)) / gd.dv

        # Calculate potential from gaussian:
        R_Rv = gd.get_grid_point_coordinates().transpose((1, 2, 3, 0))
        r_R = ((R_Rv - C_v)**2).sum(3)**0.5
        if (gd.N_c % 2 == 0).all():
            r_R[tuple(gd.N_c // 2)] = 1.0  # avoid dividing by zero
        v_R = erf(self.beta**0.5 * r_R) / r_R
        if (gd.N_c % 2 == 0).all():
            v_R[tuple(gd.N_c // 2)] = (4 * self.beta / pi)**0.5
        self.vgauss_G = self.pd2.fft(v_R)

        # Compare self-interaction to analytic result:
        assert abs(0.5 * self.pd2.integrate(self.ngauss_G, self.vgauss_G) -
                   (self.beta / 2 / pi)**0.5) < 1e-6
예제 #24
0
class HybridXC(HybridXCBase):
    orbital_dependent = True

    def __init__(self,
                 name,
                 hybrid=None,
                 xc=None,
                 alpha=None,
                 gamma_point=1,
                 method='standard',
                 bandstructure=False,
                 logfilename='-',
                 bands=None,
                 fcut=1e-10,
                 molecule=False,
                 qstride=1,
                 world=None):
        """Mix standard functionals with exact exchange.

        name: str
            Name of functional: EXX, PBE0, HSE03, HSE06
        hybrid: float
            Fraction of exact exchange.
        xc: str or XCFunctional object
            Standard DFT functional with scaled down exchange.
        method: str
            Use 'standard' standard formula and 'acdf for
            adiabatic-connection dissipation fluctuation formula.
        alpha: float
            XXX describe
        gamma_point: bool
            0: Skip k2-k1=0 interactions.
            1: Use the alpha method.
            2: Integrate the gamma point.
        bandstructure: bool
            Calculate bandstructure instead of just the total energy.
        bands: list of int
            List of bands to calculate bandstructure for.  Default is
            all bands.
        molecule: bool
            Decouple electrostatic interactions between periodically
            repeated images.
        fcut: float
            Threshold for empty band.
        """

        self.alpha = alpha
        self.fcut = fcut

        self.gamma_point = gamma_point
        self.method = method
        self.bandstructure = bandstructure
        self.bands = bands

        self.fd = logfilename
        self.write_timing_information = True

        HybridXCBase.__init__(self, name, hybrid, xc)

        # EXX energies:
        self.exx = None  # total
        self.evv = None  # valence-valence (pseudo part)
        self.evvacdf = None  # valence-valence (pseudo part)
        self.devv = None  # valence-valence (PAW correction)
        self.evc = None  # valence-core
        self.ecc = None  # core-core

        self.exx_skn = None  # bandstructure

        self.qlatest = None

        if world is None:
            world = mpi.world
        self.world = world

        self.molecule = molecule

        if isinstance(qstride, int):
            qstride = [qstride] * 3
        self.qstride_c = np.asarray(qstride)

        self.timer = Timer()

    def log(self, *args, **kwargs):
        prnt(file=self.fd, *args, **kwargs)
        self.fd.flush()

    def calculate_radial(self,
                         rgd,
                         n_sLg,
                         Y_L,
                         v_sg,
                         dndr_sLg=None,
                         rnablaY_Lv=None,
                         tau_sg=None,
                         dedtau_sg=None):
        return self.xc.calculate_radial(rgd, n_sLg, Y_L, v_sg, dndr_sLg,
                                        rnablaY_Lv)

    def calculate_paw_correction(self,
                                 setup,
                                 D_sp,
                                 dEdD_sp=None,
                                 addcoredensity=True,
                                 a=None):
        return self.xc.calculate_paw_correction(setup, D_sp, dEdD_sp,
                                                addcoredensity, a)

    def initialize(self, dens, ham, wfs, occupations):
        assert wfs.bd.comm.size == 1

        self.xc.initialize(dens, ham, wfs, occupations)

        self.dens = dens
        self.wfs = wfs

        # Make a k-point descriptor that is not distributed
        # (self.kd.comm is serial_comm):
        self.kd = wfs.kd.copy()

        self.fd = logfile(self.fd, self.world.rank)

        wfs.initialize_wave_functions_from_restart_file()

    def set_positions(self, spos_ac):
        self.spos_ac = spos_ac

    def calculate(self, gd, n_sg, v_sg=None, e_g=None):
        # Normal XC contribution:
        exc = self.xc.calculate(gd, n_sg, v_sg, e_g)

        # Add EXX contribution:
        return exc + self.exx * self.hybrid

    def calculate_exx(self):
        """Non-selfconsistent calculation."""

        self.timer.start('EXX')
        self.timer.start('Initialization')

        kd = self.kd
        wfs = self.wfs

        if fftw.FFTPlan is fftw.NumpyFFTPlan:
            self.log('NOT USING FFTW !!')

        self.log('Spins:', self.wfs.nspins)

        W = max(1, self.wfs.kd.comm.size // self.wfs.nspins)
        # Are the k-points distributed?
        kparallel = (W > 1)

        # Find number of occupied bands:
        self.nocc_sk = np.zeros((self.wfs.nspins, kd.nibzkpts), int)
        for kpt in self.wfs.kpt_u:
            for n, f in enumerate(kpt.f_n):
                if abs(f) < self.fcut:
                    self.nocc_sk[kpt.s, kpt.k] = n
                    break
            else:
                self.nocc_sk[kpt.s, kpt.k] = self.wfs.bd.nbands
        self.wfs.kd.comm.sum(self.nocc_sk)

        noccmin = self.nocc_sk.min()
        noccmax = self.nocc_sk.max()
        self.log('Number of occupied bands (min, max): %d, %d' %
                 (noccmin, noccmax))

        self.log('Number of valence electrons:', self.wfs.setups.nvalence)

        if self.bandstructure:
            self.log('Calculating eigenvalue shifts.')

            # allocate array for eigenvalue shifts:
            self.exx_skn = np.zeros(
                (self.wfs.nspins, kd.nibzkpts, self.wfs.bd.nbands))

            if self.bands is None:
                noccmax = self.wfs.bd.nbands
            else:
                noccmax = max(max(self.bands) + 1, noccmax)

        N_c = self.kd.N_c

        vol = wfs.gd.dv * wfs.gd.N_c.prod()
        if self.alpha is None:
            alpha = 6 * vol**(2 / 3.0) / pi**2
        else:
            alpha = self.alpha
        if self.gamma_point == 1:
            if alpha == 0.0:
                qvol = (2 * np.pi)**3 / vol / N_c.prod()
                self.gamma = 4 * np.pi * (3 * qvol /
                                          (4 * np.pi))**(1 / 3.) / qvol
            else:
                self.gamma = self.calculate_gamma(vol, alpha)
        else:
            kcell_cv = wfs.gd.cell_cv.copy()
            kcell_cv[0] *= N_c[0]
            kcell_cv[1] *= N_c[1]
            kcell_cv[2] *= N_c[2]
            self.gamma = madelung(kcell_cv) * vol * N_c.prod() / (4 * np.pi)

        self.log('Value of alpha parameter: %.3f Bohr^2' % alpha)
        self.log('Value of gamma parameter: %.3f Bohr^2' % self.gamma)

        # Construct all possible q=k2-k1 vectors:
        Nq_c = (N_c - 1) // self.qstride_c
        i_qc = np.indices(Nq_c * 2 + 1, float).transpose((1, 2, 3, 0)).reshape(
            (-1, 3))
        self.bzq_qc = (i_qc - Nq_c) / N_c * self.qstride_c
        self.q0 = ((Nq_c * 2 + 1).prod() - 1) // 2  # index of q=(0,0,0)
        assert not self.bzq_qc[self.q0].any()

        # Count number of pairs for each q-vector:
        self.npairs_q = np.zeros(len(self.bzq_qc), int)
        for s in range(kd.nspins):
            for k1 in range(kd.nibzkpts):
                for k2 in range(kd.nibzkpts):
                    for K2, q, n1_n, n2 in self.indices(s, k1, k2):
                        self.npairs_q[q] += len(n1_n)

        self.npairs0 = self.npairs_q.sum()  # total number of pairs

        self.log('Number of pairs:', self.npairs0)

        # Distribute q-vectors to Q processors:
        Q = self.world.size // self.wfs.kd.comm.size
        myrank = self.world.rank // self.wfs.kd.comm.size
        rank = 0
        N = 0
        myq = []
        nq = 0
        for q, n in enumerate(self.npairs_q):
            if n > 0:
                nq += 1
                if rank == myrank:
                    myq.append(q)
            N += n
            if N >= (rank + 1.0) * self.npairs0 / Q:
                rank += 1

        assert len(myq) > 0, 'Too few q-vectors for too many processes!'
        self.bzq_qc = self.bzq_qc[myq]
        try:
            self.q0 = myq.index(self.q0)
        except ValueError:
            self.q0 = None

        self.log('%d x %d x %d k-points' % tuple(self.kd.N_c))
        self.log('Distributing %d IBZ k-points over %d process(es).' %
                 (kd.nibzkpts, self.wfs.kd.comm.size))
        self.log('Distributing %d q-vectors over %d process(es).' % (nq, Q))

        # q-point descriptor for my q-vectors:
        qd = KPointDescriptor(self.bzq_qc)

        # Plane-wave descriptor for all wave-functions:
        self.pd = PWDescriptor(wfs.pd.ecut, wfs.gd, dtype=wfs.pd.dtype, kd=kd)

        # Plane-wave descriptor pair-densities:
        self.pd2 = PWDescriptor(self.dens.pd2.ecut,
                                self.dens.gd,
                                dtype=wfs.dtype,
                                kd=qd)

        self.log('Cutoff energies:')
        self.log('    Wave functions:       %10.3f eV' %
                 (self.pd.ecut * Hartree))
        self.log('    Density:              %10.3f eV' %
                 (self.pd2.ecut * Hartree))

        # Calculate 1/|G+q|^2 with special treatment of |G+q|=0:
        G2_qG = self.pd2.G2_qG
        if self.q0 is None:
            if self.omega is None:
                self.iG2_qG = [1.0 / G2_G for G2_G in G2_qG]
            else:
                self.iG2_qG = [
                    (1.0 / G2_G * (1 - np.exp(-G2_G / (4 * self.omega**2))))
                    for G2_G in G2_qG
                ]
        else:
            G2_qG[self.q0][0] = 117.0  # avoid division by zero
            if self.omega is None:
                self.iG2_qG = [1.0 / G2_G for G2_G in G2_qG]
                self.iG2_qG[self.q0][0] = self.gamma
            else:
                self.iG2_qG = [
                    (1.0 / G2_G * (1 - np.exp(-G2_G / (4 * self.omega**2))))
                    for G2_G in G2_qG
                ]
                self.iG2_qG[self.q0][0] = 1 / (4 * self.omega**2)
            G2_qG[self.q0][0] = 0.0  # restore correct value

        # Compensation charges:
        self.ghat = PWLFC([setup.ghat_l for setup in wfs.setups], self.pd2)
        self.ghat.set_positions(self.spos_ac)

        if self.molecule:
            self.initialize_gaussian()
            self.log('Value of beta parameter: %.3f 1/Bohr^2' % self.beta)

        self.timer.stop('Initialization')

        # Ready ... set ... go:
        self.t0 = time()
        self.npairs = 0
        self.evv = 0.0
        self.evvacdf = 0.0
        for s in range(self.wfs.nspins):
            kpt1_q = [
                KPoint(self.wfs, noccmax).initialize(kpt)
                for kpt in self.wfs.kpt_u if kpt.s == s
            ]
            kpt2_q = kpt1_q[:]

            if len(kpt1_q) == 0:
                # No s-spins on this CPU:
                continue

            # Send and receive ranks:
            srank = self.wfs.kd.get_rank_and_index(s, (kpt1_q[0].k - 1) %
                                                   kd.nibzkpts)[0]
            rrank = self.wfs.kd.get_rank_and_index(s, (kpt1_q[-1].k + 1) %
                                                   kd.nibzkpts)[0]

            # Shift k-points kd.nibzkpts - 1 times:
            for i in range(kd.nibzkpts):
                if i < kd.nibzkpts - 1:
                    if kparallel:
                        kpt = kpt2_q[-1].next(self.wfs)
                        kpt.start_receiving(rrank)
                        kpt2_q[0].start_sending(srank)
                    else:
                        kpt = kpt2_q[0]

                self.timer.start('Calculate')
                for kpt1, kpt2 in zip(kpt1_q, kpt2_q):
                    # Loop over all k-points that k2 can be mapped to:
                    for K2, q, n1_n, n2 in self.indices(s, kpt1.k, kpt2.k):
                        self.apply(K2, q, kpt1, kpt2, n1_n, n2)
                self.timer.stop('Calculate')

                if i < kd.nibzkpts - 1:
                    self.timer.start('Wait')
                    if kparallel:
                        kpt.wait()
                        kpt2_q[0].wait()
                    self.timer.stop('Wait')
                    kpt2_q.pop(0)
                    kpt2_q.append(kpt)

        self.evv = self.world.sum(self.evv)
        self.evvacdf = self.world.sum(self.evvacdf)
        self.calculate_exx_paw_correction()

        if self.method == 'standard':
            self.exx = self.evv + self.devv + self.evc + self.ecc
        elif self.method == 'acdf':
            self.exx = self.evvacdf + self.devv + self.evc + self.ecc
        else:
            1 / 0

        self.log('Exact exchange energy:')
        for txt, e in [('core-core', self.ecc), ('valence-core', self.evc),
                       ('valence-valence (pseudo, acdf)', self.evvacdf),
                       ('valence-valence (pseudo, standard)', self.evv),
                       ('valence-valence (correction)', self.devv),
                       ('total (%s)' % self.method, self.exx)]:
            self.log('    %-36s %14.6f eV' % (txt + ':', e * Hartree))

        self.log('Total time: %10.3f seconds' % (time() - self.t0))

        self.npairs = self.world.sum(self.npairs)
        assert self.npairs == self.npairs0

        self.timer.stop('EXX')
        self.timer.write(self.fd)

    def calculate_gamma(self, vol, alpha):
        if self.molecule:
            return 0.0

        N_c = self.kd.N_c
        offset_c = (N_c + 1) % 2 * 0.5 / N_c
        bzq_qc = monkhorst_pack(N_c) + offset_c
        qd = KPointDescriptor(bzq_qc)
        pd = PWDescriptor(self.wfs.pd.ecut, self.wfs.gd, kd=qd)
        gamma = (vol / (2 * pi)**2 * sqrt(pi / alpha) * self.kd.nbzkpts)
        for G2_G in pd.G2_qG:
            if G2_G[0] < 1e-7:
                G2_G = G2_G[1:]
            gamma -= np.dot(np.exp(-alpha * G2_G), G2_G**-1)
        return gamma / self.qstride_c.prod()

    def indices(self, s, k1, k2):
        """Generator for (K2, q, n1, n2) indices for (k1, k2) pair.

        s: int
            Spin index.
        k1: int
            Index of k-point in the IBZ.
        k2: int
            Index of k-point in the IBZ.

        Returns (K, q, n1_n, n2), where K then index of the k-point in
        the BZ that k2 is mapped to, q is the index of the q-vector
        between K and k1, and n1_n is a list of bands that should be
        combined with band n2."""

        for K, k in enumerate(self.kd.bz2ibz_k):
            if k == k2:
                for K, q, n1_n, n2 in self._indices(s, k1, k2, K):
                    yield K, q, n1_n, n2

    def _indices(self, s, k1, k2, K2):
        k1_c = self.kd.ibzk_kc[k1]
        k2_c = self.kd.bzk_kc[K2]
        q_c = k2_c - k1_c
        q = abs(self.bzq_qc - q_c).sum(1).argmin()
        if abs(self.bzq_qc[q] - q_c).sum() > 1e-7:
            return

        if self.gamma_point == 0 and q == self.q0:
            return

        nocc1 = self.nocc_sk[s, k1]
        nocc2 = self.nocc_sk[s, k2]

        # Is k2 in the IBZ?
        is_ibz2 = (self.kd.ibz2bz_k[k2] == K2)

        for n2 in range(self.wfs.bd.nbands):
            # Find range of n1's (from n1a to n1b-1):
            if is_ibz2:
                # We get this combination twice, so let's only do half:
                if k1 >= k2:
                    n1a = n2
                else:
                    n1a = n2 + 1
            else:
                n1a = 0

            n1b = self.wfs.bd.nbands

            if self.bandstructure:
                if n2 >= nocc2:
                    n1b = min(n1b, nocc1)
            else:
                if n2 >= nocc2:
                    break
                n1b = min(n1b, nocc1)

            if self.bands is not None:
                assert self.bandstructure
                n1_n = []
                for n1 in range(n1a, n1b):
                    if (n1 in self.bands and n2 < nocc2
                            or is_ibz2 and n2 in self.bands and n1 < nocc1):
                        n1_n.append(n1)
                n1_n = np.array(n1_n)
            else:
                n1_n = np.arange(n1a, n1b)

            if len(n1_n) == 0:
                continue

            yield K2, q, n1_n, n2

    def apply(self, K2, q, kpt1, kpt2, n1_n, n2):
        k20_c = self.kd.ibzk_kc[kpt2.k]
        k2_c = self.kd.bzk_kc[K2]

        if k2_c.any():
            self.timer.start('Initialize plane waves')
            eik2r_R = self.wfs.gd.plane_wave(k2_c)
            eik20r_R = self.wfs.gd.plane_wave(k20_c)
            self.timer.stop('Initialize plane waves')
        else:
            eik2r_R = 1.0
            eik20r_R = 1.0

        w1 = self.kd.weight_k[kpt1.k]
        w2 = self.kd.weight_k[kpt2.k]

        # Is k2 in the 1. BZ?
        is_ibz2 = (self.kd.ibz2bz_k[kpt2.k] == K2)

        e_n = self.calculate_interaction(n1_n, n2, kpt1, kpt2, q, K2, eik20r_R,
                                         eik2r_R, is_ibz2)

        e_n *= 1.0 / self.kd.nbzkpts / self.wfs.nspins * self.qstride_c.prod()

        if q == self.q0:
            e_n[n1_n == n2] *= 0.5

        f1_n = kpt1.f_n[n1_n]
        eps1_n = kpt1.eps_n[n1_n]
        f2 = kpt2.f_n[n2]
        eps2 = kpt2.eps_n[n2]

        s_n = np.sign(eps2 - eps1_n)

        evv = (f1_n * f2 * e_n).sum()
        evvacdf = 0.5 * (f1_n * (1 - s_n) * e_n + f2 * (1 + s_n) * e_n).sum()
        self.evv += evv * w1
        self.evvacdf += evvacdf * w1
        if is_ibz2:
            self.evv += evv * w2
            self.evvacdf += evvacdf * w2

        if self.bandstructure:
            x = self.wfs.nspins
            self.exx_skn[kpt1.s, kpt1.k, n1_n] += x * f2 * e_n
            if is_ibz2:
                self.exx_skn[kpt2.s, kpt2.k, n2] += x * np.dot(f1_n, e_n)

    def calculate_interaction(self, n1_n, n2, kpt1, kpt2, q, k, eik20r_R,
                              eik2r_R, is_ibz2):
        """Calculate Coulomb interactions.

        For all n1 in the n1_n list, calculate interaction with n2."""

        # number of plane waves:
        ng1 = self.wfs.ng_k[kpt1.k]
        ng2 = self.wfs.ng_k[kpt2.k]

        # Transform to real space and apply symmetry operation:
        self.timer.start('IFFT1')
        if is_ibz2:
            u2_R = self.pd.ifft(kpt2.psit_nG[n2, :ng2], kpt2.k)
        else:
            psit2_R = self.pd.ifft(kpt2.psit_nG[n2, :ng2], kpt2.k) * eik20r_R
            self.timer.start('Symmetry transform')
            u2_R = self.kd.transform_wave_function(psit2_R, k) / eik2r_R
            self.timer.stop()
        self.timer.stop()

        # Calculate pair densities:
        nt_nG = self.pd2.zeros(len(n1_n), q=q)
        for n1, nt_G in zip(n1_n, nt_nG):
            self.timer.start('IFFT2')
            u1_R = self.pd.ifft(kpt1.psit_nG[n1, :ng1], kpt1.k)
            self.timer.stop()
            nt_R = u1_R.conj() * u2_R
            self.timer.start('FFT')
            nt_G[:] = self.pd2.fft(nt_R, q)
            self.timer.stop()

        s = self.kd.sym_k[k]
        time_reversal = self.kd.time_reversal_k[k]
        k2_c = self.kd.ibzk_kc[kpt2.k]

        self.timer.start('Compensation charges')
        Q_anL = {}  # coefficients for shape functions
        for a, P1_ni in kpt1.P_ani.items():
            P1_ni = P1_ni[n1_n]

            if is_ibz2:
                P2_i = kpt2.P_ani[a][n2]
            else:
                b = self.kd.symmetry.a_sa[s, a]
                S_c = (np.dot(self.spos_ac[a], self.kd.symmetry.op_scc[s]) -
                       self.spos_ac[b])
                assert abs(S_c.round() - S_c).max() < 1e-5
                if self.ghat.dtype == complex:
                    x = np.exp(2j * pi * np.dot(k2_c, S_c))
                else:
                    x = 1.0
                P2_i = np.dot(self.wfs.setups[a].R_sii[s],
                              kpt2.P_ani[b][n2]) * x
                if time_reversal:
                    P2_i = P2_i.conj()

            D_np = []
            for P1_i in P1_ni:
                D_ii = np.outer(P1_i.conj(), P2_i)
                D_np.append(pack(D_ii))
            Q_anL[a] = np.dot(D_np, self.wfs.setups[a].Delta_pL)

        self.timer.start('Expand')
        if q != self.qlatest:
            self.f_IG = self.ghat.expand(q)
            self.qlatest = q
        self.timer.stop('Expand')

        # Add compensation charges:
        self.ghat.add(nt_nG, Q_anL, q, self.f_IG)
        self.timer.stop('Compensation charges')

        if self.molecule and n2 in n1_n:
            nn = (n1_n == n2).nonzero()[0][0]
            nt_nG[nn] -= self.ngauss_G
        else:
            nn = None

        iG2_G = self.iG2_qG[q]

        # Calculate energies:
        e_n = np.empty(len(n1_n))
        for n, nt_G in enumerate(nt_nG):
            e_n[n] = -4 * pi * np.real(self.pd2.integrate(nt_G, nt_G * iG2_G))
            self.npairs += 1

        if nn is not None:
            e_n[nn] -= 2 * (self.pd2.integrate(nt_nG[nn], self.vgauss_G) +
                            (self.beta / 2 / pi)**0.5)

        if self.write_timing_information:
            t = (time() - self.t0) / len(n1_n)
            self.log('Time for first pair-density: %10.3f seconds' % t)
            self.log('Estimated total time:        %10.3f seconds' %
                     (t * self.npairs0 / self.world.size))
            self.write_timing_information = False

        return e_n

    def calculate_exx_paw_correction(self):
        self.timer.start('PAW correction')
        self.devv = 0.0
        self.evc = 0.0
        self.ecc = 0.0

        deg = 2 // self.wfs.nspins  # spin degeneracy
        for a, D_sp in self.dens.D_asp.items():
            setup = self.wfs.setups[a]
            for D_p in D_sp:
                D_ii = unpack2(D_p)
                ni = len(D_ii)

                for i1 in range(ni):
                    for i2 in range(ni):
                        A = 0.0
                        for i3 in range(ni):
                            p13 = packed_index(i1, i3, ni)
                            for i4 in range(ni):
                                p24 = packed_index(i2, i4, ni)
                                A += setup.M_pp[p13, p24] * D_ii[i3, i4]
                        self.devv -= D_ii[i1, i2] * A / deg

                self.evc -= np.dot(D_p, setup.X_p)
            self.ecc += setup.ExxC

        if not self.bandstructure:
            self.timer.stop('PAW correction')
            return

        Q = self.world.size // self.wfs.kd.comm.size
        self.exx_skn *= Q
        for kpt in self.wfs.kpt_u:
            for a, D_sp in self.dens.D_asp.items():
                setup = self.wfs.setups[a]
                for D_p in D_sp:
                    D_ii = unpack2(D_p)
                    ni = len(D_ii)
                    P_ni = kpt.P_ani[a]
                    for i1 in range(ni):
                        for i2 in range(ni):
                            A = 0.0
                            for i3 in range(ni):
                                p13 = packed_index(i1, i3, ni)
                                for i4 in range(ni):
                                    p24 = packed_index(i2, i4, ni)
                                    A += setup.M_pp[p13, p24] * D_ii[i3, i4]
                            self.exx_skn[kpt.s, kpt.k] -= \
                                (A * P_ni[:, i1].conj() * P_ni[:, i2]).real
                            p12 = packed_index(i1, i2, ni)
                            self.exx_skn[kpt.s, kpt.k] -= \
                                (P_ni[:, i1].conj() * setup.X_p[p12] *
                                 P_ni[:, i2]).real / self.wfs.nspins

        self.world.sum(self.exx_skn)
        self.exx_skn *= self.hybrid / Q
        self.timer.stop('PAW correction')

    def initialize_gaussian(self):
        """Calculate gaussian compensation charge and its potential.

        Used to decouple electrostatic interactions between
        periodically repeated images for molecular calculations.

        Charge containing one electron::

            (beta/pi)^(3/2)*exp(-beta*r^2),

        its Fourier transform::

            exp(-G^2/(4*beta)),

        and its potential::

            erf(beta^0.5*r)/r.
        """

        gd = self.wfs.gd

        # Set exponent of exp-function to -19 on the boundary:
        self.beta = 4 * 19 * (gd.icell_cv**2).sum(1).max()

        # Calculate gaussian:
        G_Gv = self.pd2.get_reciprocal_vectors()
        G2_G = self.pd2.G2_qG[0]
        C_v = gd.cell_cv.sum(0) / 2  # center of cell
        self.ngauss_G = np.exp(-1.0 / (4 * self.beta) * G2_G +
                               1j * np.dot(G_Gv, C_v)) / gd.dv

        # Calculate potential from gaussian:
        R_Rv = gd.get_grid_point_coordinates().transpose((1, 2, 3, 0))
        r_R = ((R_Rv - C_v)**2).sum(3)**0.5
        if (gd.N_c % 2 == 0).all():
            r_R[tuple(gd.N_c // 2)] = 1.0  # avoid dividing by zero
        v_R = erf(self.beta**0.5 * r_R) / r_R
        if (gd.N_c % 2 == 0).all():
            v_R[tuple(gd.N_c // 2)] = (4 * self.beta / pi)**0.5
        self.vgauss_G = self.pd2.fft(v_R)

        # Compare self-interaction to analytic result:
        assert abs(0.5 * self.pd2.integrate(self.ngauss_G, self.vgauss_G) -
                   (self.beta / 2 / pi)**0.5) < 1e-6
예제 #25
0
class LrTDDFT(ExcitationList):

    """Linear Response TDDFT excitation class

    Input parameters:

    calculator:
    the calculator object after a ground state calculation

    nspins:
    number of spins considered in the calculation
    Note: Valid only for unpolarised ground state calculation

    eps:
    Minimal occupation difference for a transition (default 0.001)

    istart:
    First occupied state to consider
    jend:
    Last unoccupied state to consider

    xc:
    Exchange-Correlation approximation in the Kernel
    derivative_level:
    0: use Exc, 1: use vxc, 2: use fxc  if available

    filename:
    read from a file
    """

    def __init__(self, calculator=None, **kwargs):

        self.timer = Timer()

        self.set(**kwargs)

        if isinstance(calculator, str):
            ExcitationList.__init__(self, None, self.txt)
            self.filename = calculator
        else:
            ExcitationList.__init__(self, calculator, self.txt)

        if self.filename is not None:
            return self.read(self.filename)

        if self.eh_comm is None:
            self.eh_comm = mpi.serial_comm
        elif isinstance(self.eh_comm, (mpi.world.__class__,
                                       mpi.serial_comm.__class__)):
            # Correct type already.
            pass
        else:
            # world should be a list of ranks:
            self.eh_comm = mpi.world.new_communicator(np.asarray(eh_comm))

        if calculator is not None and calculator.initialized:
            if not isinstance(calculator.wfs, FDWaveFunctions):
                raise RuntimeError(
                    'Linear response TDDFT supported only in real space mode')
            if calculator.wfs.kd.comm.size > 1:
                err_txt = 'Spin parallelization with Linear response '
                err_txt += "TDDFT. Use parallel = {'domain' : 'domain_only'} "
                err_txt += 'calculator parameter.'
                raise NotImplementedError(err_txt)
            if self.xc == 'GS':
                self.xc = calculator.hamiltonian.xc.name
            if calculator.input_parameters.mode != 'lcao':
                calculator.converge_wave_functions()
            if calculator.density.nct_G is None:
                spos_ac = calculator.initialize_positions()
                calculator.wfs.initialize(calculator.density,
                                          calculator.hamiltonian, spos_ac)

            self.update(calculator)

    def set(self, **kwargs):

        defaults = {
            'nspins': None,
            'eps': 0.001,
            'istart': 0,
            'jend': sys.maxsize,
            'energy_range': None,
            'xc': 'GS',
            'derivative_level': 1,
            'numscale': 0.00001,
            'txt': None,
            'filename': None,
            'finegrid': 2,
            'force_ApmB': False,  # for tests
            'eh_comm': None  # parallelization over eh-pairs
        }

        changed = False
        for key, value in defaults.items():
            if hasattr(self, key):
                value = getattr(self, key)  # do not overwrite
            setattr(self, key, kwargs.pop(key, value))
            if value != getattr(self, key):
                changed = True

        for key in kwargs:
            raise KeyError('Unknown key ' + key)

        return changed

    def set_calculator(self, calculator):
        self.calculator = calculator
#        self.force_ApmB = parameters['force_ApmB']
        self.force_ApmB = None  # XXX

    def analyse(self, what=None, out=None, min=0.1):
        """Print info about the transitions.

        Parameters:
          1. what: I list of excitation indicees, None means all
          2. out : I where to send the output, None means sys.stdout
          3. min : I minimal contribution to list (0<min<1)
        """
        if what is None:
            what = range(len(self))
        elif isinstance(what, int):
            what = [what]

        if out is None:
            out = sys.stdout

        for i in what:
            print(str(i) + ':', self[i].analyse(min=min), file=out)

    def update(self, calculator=None, **kwargs):

        changed = self.set(**kwargs)
        if calculator is not None:
            changed = True
            self.set_calculator(calculator)

        if not changed:
            return

        self.forced_update()

    def forced_update(self):
        """Recalc yourself."""
        if not self.force_ApmB:
            Om = OmegaMatrix
            name = 'LrTDDFT'
            if self.xc:
                xc = XC(self.xc)
                if hasattr(xc, 'hybrid') and xc.hybrid > 0.0:
                    Om = ApmB
                    name = 'LrTDDFThyb'
        else:
            Om = ApmB
            name = 'LrTDDFThyb'

        self.kss = KSSingles(calculator=self.calculator,
                             nspins=self.nspins,
                             eps=self.eps,
                             istart=self.istart,
                             jend=self.jend,
                             energy_range=self.energy_range,
                             txt=self.txt)

        self.Om = Om(self.calculator, self.kss,
                     self.xc, self.derivative_level, self.numscale,
                     finegrid=self.finegrid, eh_comm=self.eh_comm,
                     txt=self.txt)
        self.name = name

    def diagonalize(self, istart=None, jend=None,
                    energy_range=None, TDA=False):
        self.timer.start('diagonalize')
        self.timer.start('omega')
        self.Om.diagonalize(istart, jend, energy_range, TDA)
        self.timer.stop('omega')

        # remove old stuff
        self.timer.start('clean')
        while len(self):
            self.pop()
        self.timer.stop('clean')

        print('LrTDDFT digonalized:', file=self.txt)
        self.timer.start('build')
        for j in range(len(self.Om.kss)):
            self.append(LrTDDFTExcitation(self.Om, j))
            print(' ', str(self[-1]), file=self.txt)
        self.timer.stop('build')
        self.timer.stop('diagonalize')

    def get_Om(self):
        return self.Om

    def read(self, filename=None, fh=None):
        """Read myself from a file"""

        if fh is None:
            if filename.endswith('.gz'):
                try:
                    import gzip
                    f = gzip.open(filename)
                except:
                    f = open(filename, 'r')
            else:
                f = open(filename, 'r')
            self.filename = filename
        else:
            f = fh
            self.filename = None

        # get my name
        s = f.readline().replace('\n', '')
        self.name = s.split()[1]

        self.xc = f.readline().replace('\n', '').split()[0]
        values = f.readline().split()
        self.eps = float(values[0])
        if len(values) > 1:
            self.derivative_level = int(values[1])
            self.numscale = float(values[2])
            self.finegrid = int(values[3])
        else:
            # old writing style, use old defaults
            self.numscale = 0.001

        self.kss = KSSingles(filehandle=f)
        if self.name == 'LrTDDFT':
            self.Om = OmegaMatrix(kss=self.kss, filehandle=f,
                                  txt=self.txt)
        else:
            self.Om = ApmB(kss=self.kss, filehandle=f,
                           txt=self.txt)
        self.Om.Kss(self.kss)

        # check if already diagonalized
        p = f.tell()
        s = f.readline()
        if s != '# Eigenvalues\n':
            # go back to previous position
            f.seek(p)
        else:
            # load the eigenvalues
            n = int(f.readline().split()[0])
            for i in range(n):
                self.append(LrTDDFTExcitation(string=f.readline()))
            # load the eigenvectors
            f.readline()
            for i in range(n):
                values = f.readline().split()
                weights = [float(val) for val in values]
                self[i].f = np.array(weights)
                self[i].kss = self.kss

        if fh is None:
            f.close()

        # update own variables
        self.istart = self.Om.fullkss.istart
        self.jend = self.Om.fullkss.jend

    def singlets_triplets(self):
        """Split yourself into a singlet and triplet object"""

        slr = LrTDDFT(None, nspins=self.nspins, eps=self.eps,
                      istart=self.istart, jend=self.jend, xc=self.xc,
                      derivative_level=self.derivative_level,
                      numscale=self.numscale)
        tlr = LrTDDFT(None, nspins=self.nspins, eps=self.eps,
                      istart=self.istart, jend=self.jend, xc=self.xc,
                      derivative_level=self.derivative_level,
                      numscale=self.numscale)
        slr.Om, tlr.Om = self.Om.singlets_triplets()
        for lr in [slr, tlr]:
            lr.kss = lr.Om.fullkss
        return slr, tlr

    def single_pole_approximation(self, i, j):
        """Return the excitation according to the
        single pole approximation. See e.g.:
        Grabo et al, Theochem 501 (2000) 353-367
        """
        for ij, kss in enumerate(self.kss):
            if kss.i == i and kss.j == j:
                return sqrt(self.Om.full[ij][ij]) * Hartree
                return self.Om.full[ij][ij] / kss.energy * Hartree

    def __str__(self):
        string = ExcitationList.__str__(self)
        string += '# derived from:\n'
        string += self.Om.kss.__str__()
        return string

    def write(self, filename=None, fh=None):
        """Write current state to a file.

        'filename' is the filename. If the filename ends in .gz,
        the file is automatically saved in compressed gzip format.

        'fh' is a filehandle. This can be used to write into already
        opened files.
        """
        if mpi.rank == mpi.MASTER:
            if fh is None:
                if filename.endswith('.gz'):
                    try:
                        import gzip
                        f = gzip.open(filename, 'wb')
                    except:
                        f = open(filename, 'w')
                else:
                    f = open(filename, 'w')
            else:
                f = fh

            f.write('# ' + self.name + '\n')
            xc = self.xc
            if xc is None:
                xc = 'RPA'
            if self.calculator is not None:
                xc += ' ' + self.calculator.get_xc_functional()
            f.write(xc + '\n')
            f.write('%g %d %g %d' % (self.eps, int(self.derivative_level),
                                     self.numscale, int(self.finegrid)) + '\n')
            self.kss.write(fh=f)
            self.Om.write(fh=f)

            if len(self):
                f.write('# Eigenvalues\n')
                istart = self.istart
                if istart is None:
                    istart = self.kss.istart
                jend = self.jend
                if jend is None:
                    jend = self.kss.jend
                f.write('%d %d %d' % (len(self), istart, jend) + '\n')
                for ex in self:
                    f.write(ex.outstring())
                f.write('# Eigenvectors\n')
                for ex in self:
                    for w in ex.f:
                        f.write('%g ' % w)
                    f.write('\n')

            if fh is None:
                f.close()
예제 #26
0
파일: raman.py 프로젝트: misdoro/python-ase
class ResonantRaman(Vibrations):
    """Class for calculating vibrational modes and
    resonant Raman intensities using finite difference.

    atoms:
        Atoms object
    Excitations:
        Class to calculate the excitations. The class object is
        initialized as::
            
            Excitations(atoms.get_calculator())
            
        or by reading form a file as::
            
            Excitations('filename', **exkwargs)
            
        The file is written by calling the method
        Excitations.write('filename').
    """
    def __init__(self, atoms, Excitations,
                 indices=None,
                 gsname='rraman',  # name for ground state calculations
                 exname=None,      # name for excited state calculations
                 delta=0.01,
                 nfree=2,
                 directions=None,
                 exkwargs={},      # kwargs to be passed to Excitations
                 txt='-'):
        assert(nfree == 2)
        Vibrations.__init__(self, atoms, indices, gsname, delta, nfree)
        self.name = gsname + '-d%.3f' % delta
        if exname is None:
            exname = gsname
        self.exname = exname + '-d%.3f' % delta

        if directions is None:
            self.directions = np.array([0, 1, 2])
        else:
            self.directions = np.array(directions)

        self.exobj = Excitations
        self.exkwargs = exkwargs

        self.timer = Timer()
        self.txt = get_txt(txt, rank)

    def calculate(self, filename, fd):
        """Call ground and excited state calculation"""
        self.timer.start('Ground state')
        forces = self.atoms.get_forces()
        if rank == 0:
            pickle.dump(forces, fd)
            fd.close()
        self.timer.stop('Ground state')
        self.timer.start('Excitations')
        basename, _ = os.path.splitext(filename)
        excitations = self.exobj(self.atoms.get_calculator())
        excitations.write(basename + '.excitations')
        self.timer.stop('Excitations')

    def get_intensity_tensor(self, omega, gamma=0.1):
        if not hasattr(self, 'modes'):
            self.read()

        if not hasattr(self, 'ex0'):
            eu = units.Hartree

            def get_me_tensor(exname, n, form='v'):
                def outer(ex):
                    me = ex.get_dipole_me(form=form)
                    return np.outer(me, me.conj())
                ex_p = self.exobj(exname, **self.exkwargs)
                if len(ex_p) != n:
                    raise RuntimeError(
                        ('excitations {0} of wrong length: {1} != {2}' +
                         ' exkwargs={3}').format(
                             exname, len(ex_p), n, self.exkwargs))
                m_ccp = np.empty((3, 3, len(ex_p)), dtype=complex)
                for p, ex in enumerate(ex_p):
                    m_ccp[:, :, p] = outer(ex)
                return m_ccp

            self.timer.start('reading excitations')
            ex_p = self.exobj(self.exname + '.eq.excitations',
                              **self.exkwargs)
            n = len(ex_p)
            self.ex0 = np.array([ex.energy * eu for ex in ex_p])
            self.exminus = []
            self.explus = []
            for a in self.indices:
                for i in 'xyz':
                    name = '%s.%d%s' % (self.exname, a, i)
                    self.exminus.append(get_me_tensor(
                        name + '-.excitations', n))
                    self.explus.append(get_me_tensor(
                        name + '+.excitations', n))
            self.timer.stop('reading excitations')

        self.timer.start('amplitudes')

        self.timer.start('init')
        ndof = 3 * len(self.indices)
        amplitudes = np.zeros((ndof, 3, 3), dtype=complex)
        pre = 1. / (2 * self.delta)
        self.timer.stop('init')
        
        def kappa(me_ccp, e_p, omega, gamma, form='v'):
            """Kappa tensor after Profeta and Mauri
            PRB 63 (2001) 245415"""
            result = (me_ccp / (e_p - omega - 1j * gamma) +
                      me_ccp.conj() / (e_p + omega + 1j * gamma))
            return result.sum(2)

        r = 0
        for a in self.indices:
            for i in 'xyz':
                amplitudes[r] = pre * (
                    kappa(self.explus[r], self.ex0, omega, gamma) -
                    kappa(self.exminus[r], self.ex0, omega, gamma))
                r += 1

        self.timer.stop('amplitudes')
        
        # map to modes
        am = np.dot(amplitudes.T, self.modes.T).T
        return omega**4 * (am * am.conj()).real

    def get_intensities(self, omega, gamma=0.1):
        return self.get_intensity_tensor(omega, gamma).sum(axis=1).sum(axis=1)

    def get_spectrum(self, omega, gamma=0.1,
                     start=200, end=4000, npts=None, width=4,
                     type='Gaussian', method='standard', direction='central',
                     intensity_unit='????', normalize=False):
        """Get resonant Raman spectrum.

        The method returns wavenumbers in cm^-1 with corresponding
        absolute infrared intensity.
        Start and end point, and width of the Gaussian/Lorentzian should
        be given in cm^-1.
        normalize=True ensures the integral over the peaks to give the
        intensity.
        """

        self.type = type.lower()
        assert self.type in ['gaussian', 'lorentzian']

        if not npts:
            npts = (end - start) / width * 10 + 1
        frequencies = self.get_frequencies(method, direction).real
        intensities = self.get_intensities(omega, gamma)
        prefactor = 1
        if type == 'lorentzian':
            intensities = intensities * width * np.pi / 2.
            if normalize:
                prefactor = 2. / width / np.pi
        else:
            sigma = width / 2. / np.sqrt(2. * np.log(2.))
            if normalize:
                prefactor = 1. / sigma / np.sqrt(2 * np.pi)
        #Make array with spectrum data
        spectrum = np.empty(npts, np.float)
        energies = np.empty(npts, np.float)
        ediff = (end - start) / float(npts - 1)
        energies = np.arange(start, end + ediff / 2, ediff)
        for i, energy in enumerate(energies):
            energies[i] = energy
            if type == 'lorentzian':
                spectrum[i] = (intensities * 0.5 * width / np.pi / (
                        (frequencies - energy)**2 + 0.25 * width**2)).sum()
            else:
                spectrum[i] = (intensities *
                               np.exp(-(frequencies - energy)**2 /
                                       2. / sigma**2)).sum()
        return [energies, prefactor * spectrum]

    def write_spectra(self, omega, gamma,
                      out='resonant-raman-spectra.dat',
                      start=200, end=4000,
                      npts=None, width=10,
                      type='Gaussian', method='standard',
                      direction='central'):
        """Write out spectrum to file.

        First column is the wavenumber in cm^-1, the second column the
        absolute infrared intensities, and
        the third column the absorbance scaled so that data runs
        from 1 to 0. Start and end
        point, and width of the Gaussian/Lorentzian should be given
        in cm^-1."""
        energies, spectrum = self.get_spectrum(omega, gamma,
                                               start, end, npts, width,
                                               type, method, direction)

        #Write out spectrum in file. First column is absolute intensities.
        outdata = np.empty([len(energies), 3])
        outdata.T[0] = energies
        outdata.T[1] = spectrum
        fd = open(out, 'w')
        fd.write('# Resonat Raman spectrum\n')
        fd.write('# omega={0:g} eV, gamma={1:g} eV\n'.format(omega, gamma))
        fd.write('# %s folded, width=%g cm^-1\n' % (type.title(), width))
        fd.write('# [cm^-1]  [a.u.]\n')

        for row in outdata:
            fd.write('%.3f  %15.5g\n' %
                     (row[0], row[1]))
        fd.close()

    def summary(self, omega, gamma=0.1,
                method='standard', direction='central',
                intensity_unit='(D/A)2/amu', log=sys.stdout):
        """Print summary for given omega [eV]"""
        hnu = self.get_energies(method, direction)
        s = 0.01 * units._e / units._c / units._hplanck
        intensities = self.get_intensities(omega, gamma)

        if isinstance(log, str):
            log = paropen(log, 'a')

        parprint('-------------------------------------', file=log)
        parprint(' excitation at ' + str(omega) + ' eV', file=log)
        parprint(' gamma ' + str(gamma) + ' eV\n', file=log)
        parprint(' Mode    Frequency        Intensity', file=log)
        parprint('  #    meV     cm^-1      [a.u.]', file=log)
        parprint('-------------------------------------', file=log)
        for n, e in enumerate(hnu):
            if e.imag != 0:
                c = 'i'
                e = e.imag
            else:
                c = ' '
                e = e.real
            parprint('%3d %6.1f%s  %7.1f%s  %9.3g' %
                     (n, 1000 * e, c, s * e, c, intensities[n]),
                     file=log)
        parprint('-------------------------------------', file=log)
        parprint('Zero-point energy: %.3f eV' % self.get_zero_point_energy(),
                 file=log)

    def __del__(self):
        self.timer.write(self.txt)
예제 #27
0
    def get_xc(self):
        """Add xc part of the coupling matrix"""

        # shorthands
        paw = self.paw
        wfs = paw.wfs
        gd = paw.density.finegd
        comm = gd.comm
        eh_comm = self.eh_comm

        fg = self.finegrid is 2
        kss = self.fullkss
        nij = len(kss)

        Om_xc = self.Om
        # initialize densities
        # nt_sg is the smooth density on the fine grid with spin index

        if kss.nvspins == 2:
            # spin polarised ground state calc.
            nt_sg = paw.density.nt_sg
        else:
            # spin unpolarised ground state calc.
            if kss.npspins == 2:
                # construct spin polarised densities
                nt_sg = np.array([.5 * paw.density.nt_sg[0],
                                  .5 * paw.density.nt_sg[0]])
            else:
                nt_sg = paw.density.nt_sg
        # check if D_sp have been changed before
        D_asp = self.paw.density.D_asp
        for a, D_sp in D_asp.items():
            if len(D_sp) != kss.npspins:
                if len(D_sp) == 1:
                    D_asp[a] = np.array([0.5 * D_sp[0], 0.5 * D_sp[0]])
                else:
                    D_asp[a] = np.array([D_sp[0] + D_sp[1]])

        # restrict the density if needed
        if fg:
            nt_s = nt_sg
        else:
            nt_s = self.gd.zeros(nt_sg.shape[0])
            for s in range(nt_sg.shape[0]):
                self.restrict(nt_sg[s], nt_s[s])
            gd = paw.density.gd

        # initialize vxc or fxc

        if self.derivativeLevel == 0:
            raise NotImplementedError
            if kss.npspins == 2:
                v_g = nt_sg[0].copy()
            else:
                v_g = nt_sg.copy()
        elif self.derivativeLevel == 1:
            pass
        elif self.derivativeLevel == 2:
            fxc_sg = np.zeros(nt_sg.shape)
            self.xc.calculate_fxc(gd, nt_sg, fxc_sg)
        else:
            raise ValueError('derivativeLevel can only be 0,1,2')

# self.paw.my_nuclei = []

        ns = self.numscale
        xc = self.xc
        print('XC', nij, 'transitions', file=self.txt)
        for ij in range(eh_comm.rank, nij, eh_comm.size):
            print('XC kss[' + '%d' % ij + ']', file=self.txt)

            timer = Timer()
            timer.start('init')
            timer2 = Timer()

            if self.derivativeLevel >= 1:
                # vxc is available
                # We use the numerical two point formula for calculating
                # the integral over fxc*n_ij. The results are
                # vvt_s        smooth integral
                # nucleus.I_sp atom based correction matrices (pack2)
                #              stored on each nucleus
                timer2.start('init v grids')
                vp_s = np.zeros(nt_s.shape, nt_s.dtype.char)
                vm_s = np.zeros(nt_s.shape, nt_s.dtype.char)
                if kss.npspins == 2:  # spin polarised
                    nv_s = nt_s.copy()
                    nv_s[kss[ij].pspin] += ns * kss[ij].get(fg)
                    xc.calculate(gd, nv_s, vp_s)
                    nv_s = nt_s.copy()
                    nv_s[kss[ij].pspin] -= ns * kss[ij].get(fg)
                    xc.calculate(gd, nv_s, vm_s)
                else:  # spin unpolarised
                    nv = nt_s + ns * kss[ij].get(fg)
                    xc.calculate(gd, nv, vp_s)
                    nv = nt_s - ns * kss[ij].get(fg)
                    xc.calculate(gd, nv, vm_s)
                vvt_s = (0.5 / ns) * (vp_s - vm_s)
                timer2.stop()

                # initialize the correction matrices
                timer2.start('init v corrections')
                I_asp = {}
                for a, P_ni in wfs.kpt_u[kss[ij].spin].P_ani.items():
                    # create the modified density matrix
                    Pi_i = P_ni[kss[ij].i]
                    Pj_i = P_ni[kss[ij].j]
                    P_ii = np.outer(Pi_i, Pj_i)
                    # we need the symmetric form, hence we can pack
                    P_p = pack(P_ii)
                    D_sp = self.paw.density.D_asp[a].copy()
                    D_sp[kss[ij].pspin] -= ns * P_p
                    setup = wfs.setups[a]
                    I_sp = np.zeros_like(D_sp)
                    self.xc.calculate_paw_correction(setup, D_sp, I_sp)
                    I_sp *= -1.0
                    D_sp = self.paw.density.D_asp[a].copy()
                    D_sp[kss[ij].pspin] += ns * P_p
                    self.xc.calculate_paw_correction(setup, D_sp, I_sp)
                    I_sp /= 2.0 * ns
                    I_asp[a] = I_sp
                timer2.stop()

            timer.stop()
            t0 = timer.get_time('init')
            timer.start(ij)

            for kq in range(ij, nij):
                weight = self.weight_Kijkq(ij, kq)

                if self.derivativeLevel == 0:
                    # only Exc is available

                    if kss.npspins == 2:  # spin polarised
                        nv_g = nt_sg.copy()
                        nv_g[kss[ij].pspin] += kss[ij].get(fg)
                        nv_g[kss[kq].pspin] += kss[kq].get(fg)
                        Excpp = xc.get_energy_and_potential(
                            nv_g[0], v_g, nv_g[1], v_g)
                        nv_g = nt_sg.copy()
                        nv_g[kss[ij].pspin] += kss[ij].get(fg)
                        nv_g[kss[kq].pspin] -= kss[kq].get(fg)
                        Excpm = xc.get_energy_and_potential(
                            nv_g[0], v_g, nv_g[1], v_g)
                        nv_g = nt_sg.copy()
                        nv_g[kss[ij].pspin] -=\
                            kss[ij].get(fg)
                        nv_g[kss[kq].pspin] +=\
                            kss[kq].get(fg)
                        Excmp = xc.get_energy_and_potential(
                            nv_g[0], v_g, nv_g[1], v_g)
                        nv_g = nt_sg.copy()
                        nv_g[kss[ij].pspin] -= \
                            kss[ij].get(fg)
                        nv_g[kss[kq].pspin] -=\
                            kss[kq].get(fg)
                        Excpp = xc.get_energy_and_potential(
                            nv_g[0], v_g, nv_g[1], v_g)
                    else:  # spin unpolarised
                        nv_g = nt_sg + ns * kss[ij].get(fg)\
                            + ns * kss[kq].get(fg)
                        Excpp = xc.get_energy_and_potential(nv_g, v_g)
                        nv_g = nt_sg + ns * kss[ij].get(fg)\
                            - ns * kss[kq].get(fg)
                        Excpm = xc.get_energy_and_potential(nv_g, v_g)
                        nv_g = nt_sg - ns * kss[ij].get(fg)\
                            + ns * kss[kq].get(fg)
                        Excmp = xc.get_energy_and_potential(nv_g, v_g)
                        nv_g = nt_sg - ns * kss[ij].get(fg)\
                            - ns * kss[kq].get(fg)
                        Excmm = xc.get_energy_and_potential(nv_g, v_g)

                    Om_xc[ij, kq] += weight *\
                        0.25 * \
                        (Excpp - Excmp - Excpm + Excmm) / (ns * ns)

                elif self.derivativeLevel == 1:
                    # vxc is available

                    timer2.start('integrate')
                    Om_xc[ij, kq] += weight *\
                        self.gd.integrate(kss[kq].get(fg) *
                                          vvt_s[kss[kq].pspin])
                    timer2.stop()

                    timer2.start('integrate corrections')
                    Exc = 0.
                    for a, P_ni in wfs.kpt_u[kss[kq].spin].P_ani.items():
                        # create the modified density matrix
                        Pk_i = P_ni[kss[kq].i]
                        Pq_i = P_ni[kss[kq].j]
                        P_ii = np.outer(Pk_i, Pq_i)
                        # we need the symmetric form, hence we can pack
                        # use pack as I_sp used pack2
                        P_p = pack(P_ii)
                        Exc += np.dot(I_asp[a][kss[kq].pspin], P_p)
                    Om_xc[ij, kq] += weight * self.gd.comm.sum(Exc)
                    timer2.stop()

                elif self.derivativeLevel == 2:
                    # fxc is available
                    if kss.npspins == 2:  # spin polarised
                        Om_xc[ij, kq] += weight *\
                            gd.integrate(kss[ij].get(fg) *
                                         kss[kq].get(fg) *
                                         fxc_sg[kss[ij].pspin, kss[kq].pspin])
                    else:  # spin unpolarised
                        Om_xc[ij, kq] += weight *\
                            gd.integrate(kss[ij].get(fg) *
                                         kss[kq].get(fg) *
                                         fxc_sg)

                    # XXX still numeric derivatives for local terms
                    timer2.start('integrate corrections')
                    Exc = 0.
                    for a, P_ni in wfs.kpt_u[kss[kq].spin].P_ani.items():
                        # create the modified density matrix
                        Pk_i = P_ni[kss[kq].i]
                        Pq_i = P_ni[kss[kq].j]
                        P_ii = np.outer(Pk_i, Pq_i)
                        # we need the symmetric form, hence we can pack
                        # use pack as I_sp used pack2
                        P_p = pack(P_ii)
                        Exc += np.dot(I_asp[a][kss[kq].pspin], P_p)
                    Om_xc[ij, kq] += weight * self.gd.comm.sum(Exc)
                    timer2.stop()

                if ij != kq:
                    Om_xc[kq, ij] = Om_xc[ij, kq]

            timer.stop()
# timer2.write()
            if ij < (nij - 1):
                print('XC estimated time left',
                      self.time_left(timer, t0, ij, nij), file=self.txt)
예제 #28
0
class RPACorrelation:
    def __init__(self, calc, xc='RPA', filename=None,
                 skip_gamma=False, qsym=True, nlambda=None,
                 nfrequencies=16, frequency_max=800.0, frequency_scale=2.0,
                 frequencies=None, weights=None,
                 world=mpi.world, nblocks=1, wstc=False,
                 txt=sys.stdout):

        if isinstance(calc, str):
            calc = GPAW(calc, txt=None, communicator=mpi.serial_comm)
        self.calc = calc

        if world.rank != 0:
            txt = devnull
        elif isinstance(txt, str):
            txt = open(txt, 'w')
        self.fd = txt

        self.timer = Timer()
        
        if frequencies is None:
            frequencies, weights = get_gauss_legendre_points(nfrequencies,
                                                             frequency_max,
                                                             frequency_scale)
            user_spec = False
        else:
            assert weights is not None
            user_spec = True
            
        self.omega_w = frequencies / Hartree
        self.weight_w = weights / Hartree

        if nblocks > 1:
            assert len(self.omega_w) % nblocks == 0
            assert wstc

        self.wstc = wstc
        self.nblocks = nblocks
        self.world = world

        self.skip_gamma = skip_gamma
        self.ibzq_qc = None
        self.weight_q = None
        self.initialize_q_points(qsym)

        # Energies for all q-vetors and cutoff energies:
        self.energy_qi = []

        self.filename = filename

        self.print_initialization(xc, frequency_scale, nlambda, user_spec)

    def initialize_q_points(self, qsym):
        kd = self.calc.wfs.kd
        self.bzq_qc = kd.get_bz_q_points(first=True)

        if not qsym:
            self.ibzq_qc = self.bzq_qc
            self.weight_q = np.ones(len(self.bzq_qc)) / len(self.bzq_qc)
        else:
            U_scc = kd.symmetry.op_scc
            self.ibzq_qc = kd.get_ibz_q_points(self.bzq_qc, U_scc)[0]
            self.weight_q = kd.q_weights

    def read(self):
        lines = open(self.filename).readlines()[1:]
        n = 0
        self.energy_qi = []
        nq = len(lines) // len(self.ecut_i)
        for q_c in self.ibzq_qc[:nq]:
            self.energy_qi.append([])
            for ecut in self.ecut_i:
                q1, q2, q3, ec, energy = [float(x)
                                          for x in lines[n].split()]
                self.energy_qi[-1].append(energy / Hartree)
                n += 1

                if (abs(q_c - (q1, q2, q3)).max() > 1e-4 or
                    abs(int(ecut * Hartree) - ec) > 0):
                    self.energy_qi = []
                    return

        print('Read %d q-points from file: %s' % (nq, self.filename),
              file=self.fd)
        print(file=self.fd)

    def write(self):
        if self.world.rank == 0 and self.filename:
            fd = open(self.filename, 'w')
            print('#%9s %10s %10s %8s %12s' %
                  ('q1', 'q2', 'q3', 'E_cut', 'E_c(q)'), file=fd)
            for energy_i, q_c in zip(self.energy_qi, self.ibzq_qc):
                for energy, ecut in zip(energy_i, self.ecut_i):
                    print('%10.4f %10.4f %10.4f %8d   %r' %
                          (tuple(q_c) + (ecut * Hartree, energy * Hartree)),
                          file=fd)

    def calculate(self, ecut, nbands=None, spin=False):
        """Calculate RPA correlation energy for one or several cutoffs.

        ecut: float or list of floats
            Plane-wave cutoff(s).
        nbands: int
            Number of bands (defaults to number of plane-waves).
        spin: bool
            Separate spin in response funtion.
            (Only needed for beyond RPA methods that inherit this function).
        """

        p = functools.partial(print, file=self.fd)

        if isinstance(ecut, (float, int)):
            ecut = ecut * (1 + 0.5 * np.arange(6))**(-2 / 3)
        self.ecut_i = np.asarray(np.sort(ecut)) / Hartree
        ecutmax = max(self.ecut_i)

        if nbands is None:
            p('Response function bands : Equal to number of plane waves')
        else:
            p('Response function bands : %s' % nbands)
        p('Plane wave cutoffs (eV) :', end='')
        for e in self.ecut_i:
            p(' {0:.3f}'.format(e * Hartree), end='')
        p()
        p()

        if self.filename and os.path.isfile(self.filename):
            self.read()
            self.world.barrier()

        chi0 = Chi0(self.calc, 1j * Hartree * self.omega_w, eta=0.0,
                    intraband=False, hilbert=False,
                    txt=self.fd, timer=self.timer, world=self.world,
                    no_optical_limit=self.wstc,
                    nblocks=self.nblocks)

        self.blockcomm = chi0.blockcomm
        
        wfs = self.calc.wfs
        
        if self.wstc:
            with self.timer('WSTC-init'):
                p('Using Wigner-Seitz truncated Coulomb potential.')
                self.wstc = WignerSeitzTruncatedCoulomb(
                    wfs.gd.cell_cv, wfs.kd.N_c, self.fd)

        nq = len(self.energy_qi)
        nw = len(self.omega_w)
        nGmax = max(count_reciprocal_vectors(ecutmax, wfs.gd, q_c)
                    for q_c in self.ibzq_qc[nq:])
        mynGmax = (nGmax + self.nblocks - 1) // self.nblocks
        
        nx = (1 + spin) * nw * mynGmax * nGmax
        A1_x = np.empty(nx, complex)
        if self.nblocks > 1:
            A2_x = np.empty(nx, complex)
        else:
            A2_x = None
        
        self.timer.start('RPA')
        
        for q_c in self.ibzq_qc[nq:]:
            if np.allclose(q_c, 0.0) and self.skip_gamma:
                self.energy_qi.append(len(self.ecut_i) * [0.0])
                self.write()
                p('Not calculating E_c(q) at Gamma')
                p()
                continue

            thisqd = KPointDescriptor([q_c])
            pd = PWDescriptor(ecutmax, wfs.gd, complex, thisqd)
            nG = pd.ngmax
            mynG = (nG + self.nblocks - 1) // self.nblocks
            chi0.Ga = self.blockcomm.rank * mynG
            chi0.Gb = min(chi0.Ga + mynG, nG)
            
            shape = (1 + spin, nw, chi0.Gb - chi0.Ga, nG)
            chi0_swGG = A1_x[:np.prod(shape)].reshape(shape)
            chi0_swGG[:] = 0.0
            
            if self.wstc or np.allclose(q_c, 0.0):
                # Wings (x=0,1) and head (G=0) for optical limit and three
                # directions (v=0,1,2):
                chi0_swxvG = np.zeros((1 + spin, nw, 2, 3, nG), complex)
                chi0_swvv = np.zeros((1 + spin, nw, 3, 3), complex)
            else:
                chi0_swxvG = None
                chi0_swvv = None

            Q_aGii = chi0.initialize_paw_corrections(pd)

            # First not completely filled band:
            m1 = chi0.nocc1
            p('# %s  -  %s' % (len(self.energy_qi), ctime().split()[-2]))
            p('q = [%1.3f %1.3f %1.3f]' % tuple(q_c))

            energy_i = []
            for ecut in self.ecut_i:
                if ecut == ecutmax:
                    # Nothing to cut away:
                    cut_G = None
                    m2 = nbands or nG
                else:
                    cut_G = np.arange(nG)[pd.G2_qG[0] <= 2 * ecut]
                    m2 = len(cut_G)

                p('E_cut = %d eV / Bands = %d:' % (ecut * Hartree, m2))
                self.fd.flush()

                energy = self.calculate_q(chi0, pd,
                                          chi0_swGG, chi0_swxvG, chi0_swvv,
                                          Q_aGii, m1, m2, cut_G, A2_x)
                energy_i.append(energy)
                m1 = m2

                a = 1 / chi0.kncomm.size
                if ecut < ecutmax and a != 1.0:
                    # Chi0 will be summed again over chicomm, so we divide
                    # by its size:
                    chi0_swGG *= a
                    if chi0_swxvG is not None:
                        chi0_swxvG *= a
                        chi0_swvv *= a

            self.energy_qi.append(energy_i)
            self.write()
            p()

        e_i = np.dot(self.weight_q, np.array(self.energy_qi))
        p('==========================================================')
        p()
        p('Total correlation energy:')
        for e_cut, e in zip(self.ecut_i, e_i):
            p('%6.0f:   %6.4f eV' % (e_cut * Hartree, e * Hartree))
        p()

        self.energy_qi = []  # important if another calculation is performed

        if len(e_i) > 1:
            self.extrapolate(e_i)

        p('Calculation completed at: ', ctime())
        p()

        self.timer.stop('RPA')
        self.timer.write(self.fd)
        self.fd.flush()
        
        return e_i * Hartree

    @timer('chi0(q)')
    def calculate_q(self, chi0, pd,
                    chi0_swGG, chi0_swxvG, chi0_swvv, Q_aGii, m1, m2, cut_G,
                    A2_x):
        chi0_wGG = chi0_swGG[0]
        if chi0_swxvG is not None:
            chi0_wxvG = chi0_swxvG[0]
            chi0_wvv = chi0_swvv[0]
        else:
            chi0_wxvG = None
            chi0_wvv = None
        chi0._calculate(pd, chi0_wGG, chi0_wxvG, chi0_wvv,
                        Q_aGii, m1, m2, [0, 1])

        print('E_c(q) = ', end='', file=self.fd)

        chi0_wGG = chi0.redistribute(chi0_wGG, A2_x)
        
        if not pd.kd.gamma or self.wstc:
            e = self.calculate_energy(pd, chi0_wGG, cut_G)
            print('%.3f eV' % (e * Hartree), file=self.fd)
            self.fd.flush()
        else:
            e = 0.0
            for v in range(3):
                chi0_wGG[:, 0] = chi0_wxvG[:, 0, v]
                chi0_wGG[:, :, 0] = chi0_wxvG[:, 1, v]
                chi0_wGG[:, 0, 0] = chi0_wvv[:, v, v]
                ev = self.calculate_energy(pd, chi0_wGG, cut_G)
                e += ev
                print('%.3f' % (ev * Hartree), end='', file=self.fd)
                if v < 2:
                    print('/', end='', file=self.fd)
                else:
                    print(' eV', file=self.fd)
                    self.fd.flush()
            e /= 3

        return e

    @timer('Energy')
    def calculate_energy(self, pd, chi0_wGG, cut_G):
        """Evaluate correlation energy from chi0."""

        if self.wstc:
            invG_G = (self.wstc.get_potential(pd) / (4 * pi))**0.5
        else:
            G_G = pd.G2_qG[0]**0.5  # |G+q|
            if pd.kd.gamma:
                G_G[0] = 1.0
            invG_G = 1.0 / G_G
            
        if cut_G is not None:
            invG_G = invG_G[cut_G]

        nG = len(invG_G)

        e_w = []
        for chi0_GG in chi0_wGG:
            if cut_G is not None:
                chi0_GG = chi0_GG.take(cut_G, 0).take(cut_G, 1)

            e_GG = (np.eye(nG) -
                    4 * np.pi * chi0_GG * invG_G * invG_G[:, np.newaxis])
            e = np.log(np.linalg.det(e_GG)) + nG - np.trace(e_GG)
            e_w.append(e.real)

        E_w = np.zeros_like(self.omega_w)
        self.blockcomm.all_gather(np.array(e_w), E_w)
        energy = np.dot(E_w, self.weight_w) / (2 * np.pi)
        self.E_w = E_w
        return energy

    def extrapolate(self, e_i):
        print('Extrapolated energies:', file=self.fd)
        ex_i = []
        for i in range(len(e_i) - 1):
            e1, e2 = e_i[i:i + 2]
            x1, x2 = self.ecut_i[i:i + 2]**-1.5
            ex = (e1 * x2 - e2 * x1) / (x2 - x1)
            ex_i.append(ex)

            print('  %4.0f -%4.0f:  %5.3f eV' % (self.ecut_i[i] * Hartree,
                                                 self.ecut_i[i + 1] * Hartree,
                                                 ex * Hartree),
                  file=self.fd)
        print(file=self.fd)
        self.fd.flush()

        return e_i * Hartree

    def print_initialization(self, xc, frequency_scale, nlambda, user_spec):
        p = functools.partial(print, file=self.fd)
        p('----------------------------------------------------------')
        p('Non-self-consistent %s correlation energy' % xc)
        p('----------------------------------------------------------')
        p('Started at:  ', ctime())
        p()
        p('Atoms                          :',
          self.calc.atoms.get_chemical_formula(mode='hill'))
        p('Ground state XC functional     :', self.calc.hamiltonian.xc.name)
        p('Valence electrons              :', self.calc.wfs.setups.nvalence)
        p('Number of bands                :', self.calc.wfs.bd.nbands)
        p('Number of spins                :', self.calc.wfs.nspins)
        p('Number of k-points             :', len(self.calc.wfs.kd.bzk_kc))
        p('Number of irreducible k-points :', len(self.calc.wfs.kd.ibzk_kc))
        p('Number of q-points             :', len(self.bzq_qc))
        p('Number of irreducible q-points :', len(self.ibzq_qc))
        p()
        for q, weight in zip(self.ibzq_qc, self.weight_q):
            p('    q: [%1.4f %1.4f %1.4f] - weight: %1.3f' %
              (q[0], q[1], q[2], weight))
        p()
        p('----------------------------------------------------------')
        p('----------------------------------------------------------')
        p()
        if nlambda is None:
            p('Analytical coupling constant integration')
        else:
            p('Numerical coupling constant integration using', nlambda,
              'Gauss-Legendre points')
        p()
        p('Frequencies')
        if not user_spec:
            p('    Gauss-Legendre integration with %s frequency points' %
              len(self.omega_w))
            p('    Transformed from [0,oo] to [0,1] using e^[-aw^(1/B)]')
            p('    Highest frequency point at %5.1f eV and B=%1.1f' %
              (self.omega_w[-1] * Hartree, frequency_scale))
        else:
            p('    User specified frequency integration with',
              len(self.omega_w), 'frequency points')
        p()
        p('Parallelization')
        p('    Total number of CPUs          : % s' % self.world.size)
        p('    G-vector decomposition       : % s' % self.nblocks)
        p('    K-point/band decomposition    : % s' %
          (self.world.size // self.nblocks))
        p()
예제 #29
0
    def get_rpa(self):
        """calculate RPA part of the omega matrix"""

        # shorthands
        kss = self.fullkss
        finegrid = self.finegrid
        wfs = self.paw.wfs
        eh_comm = self.eh_comm

        # calculate omega matrix
        nij = len(kss)
        print('RPA', nij, 'transitions', file=self.txt)

        Om = self.Om

        for ij in range(eh_comm.rank, nij, eh_comm.size):
            print('RPA kss[' + '%d' % ij + ']=', kss[ij], file=self.txt)

            timer = Timer()
            timer.start('init')
            timer2 = Timer()

            # smooth density including compensation charges
            timer2.start('with_compensation_charges 0')
            rhot_p = kss[ij].with_compensation_charges(
                finegrid is not 0)
            timer2.stop()

            # integrate with 1/|r_1-r_2|
            timer2.start('poisson')
            phit_p = np.zeros(rhot_p.shape, rhot_p.dtype.char)
            self.poisson.solve(phit_p, rhot_p, charge=None)
            timer2.stop()

            timer.stop()
            t0 = timer.get_time('init')
            timer.start(ij)

            if finegrid == 1:
                rhot = kss[ij].with_compensation_charges()
                phit = self.gd.zeros()
# print "shapes 0=",phit.shape,rhot.shape
                self.restrict(phit_p, phit)
            else:
                phit = phit_p
                rhot = rhot_p

            for kq in range(ij, nij):
                if kq != ij:
                    # smooth density including compensation charges
                    timer2.start('kq with_compensation_charges')
                    rhot = kss[kq].with_compensation_charges(
                        finegrid is 2)
                    timer2.stop()

                pre = 2 * sqrt(kss[ij].get_energy() * kss[kq].get_energy() *
                               kss[ij].get_weight() * kss[kq].get_weight())
                I = self.Coulomb_integral_kss(kss[ij], kss[kq],
                                              rhot, phit, timer2)
                Om[ij, kq] = pre * I

                if ij == kq:
                    Om[ij, kq] += kss[ij].get_energy() ** 2
                else:
                    Om[kq, ij] = Om[ij, kq]

            timer.stop()
# timer2.write()
            if ij < (nij - 1):
                t = timer.get_time(ij)  # time for nij-ij calculations
                t = .5 * t * \
                    (nij - ij)  # estimated time for n*(n+1)/2, n=nij-(ij+1)
                print('RPA estimated time left',
                      self.timestring(t0 * (nij - ij - 1) + t), file=self.txt)
예제 #30
0
    def get_rpa(self):
        """Calculate RPA and Hartree-fock part of the A+-B matrices."""

        # shorthands
        kss = self.fullkss
        finegrid = self.finegrid
        yukawa = hasattr(self.xc, 'rsf') and (self.xc.rsf == 'Yukawa')

        # calculate omega matrix
        nij = len(kss)
        print('RPAhyb', nij, 'transitions', file=self.txt)

        AmB = np.zeros((nij, nij))
        ApB = self.ApB

        # storage place for Coulomb integrals
        integrals = {}
        if yukawa:
            rsf_integrals = {}
        # setup things for IVOs
        if self.xc.excitation is not None or self.xc.excited != 0:
            sin_tri_weight = 1
            if self.xc.excitation is not None:
                ex_type = self.xc.excitation.lower()
                if ex_type == 'singlet':
                    sin_tri_weight = 2
                elif ex_type == 'triplet':
                    sin_tri_weight = 0
            h**o = int(self.paw.get_number_of_electrons() // 2)
            ivo_l = h**o - self.xc.excited - 1
        else:
            ivo_l = None

        for ij in range(nij):
            print('RPAhyb kss[' + '%d' % ij + ']=', kss[ij], file=self.txt)

            timer = Timer()
            timer.start('init')
            timer2 = Timer()

            # smooth density including compensation charges
            timer2.start('with_compensation_charges 0')
            rhot_p = kss[ij].with_compensation_charges(finegrid != 0)
            timer2.stop()

            # integrate with 1/|r_1-r_2|
            timer2.start('poisson')
            phit_p = np.zeros(rhot_p.shape, rhot_p.dtype)
            self.poisson.solve(phit_p, rhot_p, charge=None)
            timer2.stop()

            timer.stop()
            t0 = timer.get_time('init')
            timer.start(ij)

            if finegrid == 1:
                rhot = kss[ij].with_compensation_charges()
                phit = self.gd.zeros()
                self.restrict(phit_p, phit)
            else:
                phit = phit_p
                rhot = rhot_p

            for kq in range(ij, nij):
                if kq != ij:
                    # smooth density including compensation charges
                    timer2.start('kq with_compensation_charges')
                    rhot = kss[kq].with_compensation_charges(finegrid == 2)
                    timer2.stop()
                pre = self.weight_Kijkq(ij, kq)

                timer2.start('integrate')
                I = self.Coulomb_integral_kss(kss[ij], kss[kq], phit, rhot)
                if kss[ij].spin == kss[kq].spin:
                    name = self.Coulomb_integral_name(kss[ij].i, kss[ij].j,
                                                      kss[kq].i, kss[kq].j,
                                                      kss[ij].spin)
                    integrals[name] = I
                ApB[ij, kq] = pre * I
                timer2.stop()

                if ij == kq:
                    epsij = kss[ij].get_energy() / kss[ij].get_weight()
                    AmB[ij, kq] += epsij
                    ApB[ij, kq] += epsij

            timer.stop()
            # timer2.write()
            if ij < (nij - 1):
                print('RPAhyb estimated time left',
                      self.time_left(timer, t0, ij, nij),
                      file=self.txt)

        # add HF parts and apply symmetry
        if hasattr(self.xc, 'hybrid'):
            weight = self.xc.hybrid
        else:
            weight = 0.0
        for ij in range(nij):
            print('HF kss[' + '%d' % ij + ']', file=self.txt)
            timer = Timer()
            timer.start('init')
            timer.stop()
            t0 = timer.get_time('init')
            timer.start(ij)

            i = kss[ij].i
            j = kss[ij].j
            s = kss[ij].spin
            for kq in range(ij, nij):
                if kss[ij].pspin == kss[kq].pspin:
                    k = kss[kq].i
                    q = kss[kq].j
                    ikjq = self.Coulomb_integral_ijkq(i, k, j, q, s, integrals)
                    iqkj = self.Coulomb_integral_ijkq(i, q, k, j, s, integrals)
                    if yukawa:  # Yukawa integrals might be caches
                        ikjq -= self.Coulomb_integral_ijkq(
                            i, k, j, q, s, rsf_integrals, yukawa)
                        iqkj -= self.Coulomb_integral_ijkq(
                            i, q, k, j, s, rsf_integrals, yukawa)
                    ApB[ij, kq] -= weight * (ikjq + iqkj)
                    AmB[ij, kq] -= weight * (ikjq - iqkj)

                ApB[kq, ij] = ApB[ij, kq]
                AmB[kq, ij] = AmB[ij, kq]

            timer.stop()
            if ij < (nij - 1):
                print('HF estimated time left',
                      self.time_left(timer, t0, ij, nij),
                      file=self.txt)

        if ivo_l is not None:
            # IVO RPA after Berman, Kaldor, Chem. Phys. 43 (3) 1979
            # doi: 10.1016/0301-0104(79)85205-2
            l = ivo_l
            for ij in range(nij):
                i = kss[ij].i
                j = kss[ij].j
                s = kss[ij].spin
                for kq in range(ij, nij):
                    if kss[kq].i == i and kss[ij].pspin == kss[kq].pspin:
                        k = kss[kq].i
                        q = kss[kq].j
                        jqll = self.Coulomb_integral_ijkq(
                            j, q, l, l, s, integrals)
                        jllq = self.Coulomb_integral_ijkq(
                            j, l, l, q, s, integrals)
                        if yukawa:
                            jqll -= self.Coulomb_integral_ijkq(
                                j, q, l, l, s, rsf_integrals, yukawa)
                            jllq -= self.Coulomb_integral_ijkq(
                                j, l, l, q, s, rsf_integrals, yukawa)
                        jllq *= sin_tri_weight
                        ApB[ij, kq] += weight * (jqll - jllq)
                        AmB[ij, kq] += weight * (jqll - jllq)
                        ApB[kq, ij] = ApB[ij, kq]
                        AmB[kq, ij] = AmB[ij, kq]
        return AmB
예제 #31
0
class PAW(PAWTextOutput):

    """This is the main calculation object for doing a PAW calculation."""

    def __init__(self, filename=None, timer=None,
                 read_projections=True, **kwargs):
        """ASE-calculator interface.

        The following parameters can be used: nbands, xc, kpts,
        spinpol, gpts, h, charge, symmetry, width, mixer,
        hund, lmax, fixdensity, convergence, txt, parallel,
        communicator, dtype, softgauss and stencils.

        If you don't specify any parameters, you will get:

        Defaults: neutrally charged, LDA, gamma-point calculation, a
        reasonable grid-spacing, zero Kelvin electronic temperature,
        and the number of bands will be equal to the number of atomic
        orbitals present in the setups. Only occupied bands are used
        in the convergence decision. The calculation will be
        spin-polarized if and only if one or more of the atoms have
        non-zero magnetic moments. Text output will be written to
        standard output.

        For a non-gamma point calculation, the electronic temperature
        will be 0.1 eV (energies are extrapolated to zero Kelvin) and
        all symmetries will be used to reduce the number of
        **k**-points."""

        PAWTextOutput.__init__(self)
        self.grid_descriptor_class = GridDescriptor
        self.input_parameters = InputParameters()

        if timer is None:
            self.timer = Timer()
        else:
            self.timer = timer

        self.scf = None
        self.forces = ForceCalculator(self.timer)
        self.stress_vv = None
        self.dipole_v = None
        self.magmom_av = None
        self.wfs = EmptyWaveFunctions()
        self.occupations = None
        self.density = None
        self.hamiltonian = None
        self.atoms = None
        self.iter = 0

        self.initialized = False
        self.nbands_parallelization_adjustment = None  # Somehow avoid this?

        # Possibly read GPAW keyword arguments from file:
        if filename is not None and filename.endswith('.gkw'):
            from gpaw.utilities.kwargs import load
            parameters = load(filename)
            parameters.update(kwargs)
            kwargs = parameters
            filename = None  # XXX

        if filename is not None:
            comm = kwargs.get('communicator', mpi.world)
            reader = gpaw.io.open(filename, 'r', comm)
            self.atoms = gpaw.io.read_atoms(reader)
            par = self.input_parameters
            par.read(reader)

        # _changed_keywords contains those keywords that have been
        # changed by set() since last time initialize() was called.
        self._changed_keywords = set()
        self.set(**kwargs)
        # Here in the beginning, effectively every keyword has been changed.
        self._changed_keywords.update(self.input_parameters)

        if filename is not None:
            # Setups are not saved in the file if the setups were not loaded
            # *from* files in the first place
            if par.setups is None:
                if par.idiotproof:
                    raise RuntimeError('Setups not specified in file. Use '
                                       'idiotproof=False to proceed anyway.')
                else:
                    par.setups = {None: 'paw'}
            if par.basis is None:
                if par.idiotproof:
                    raise RuntimeError('Basis not specified in file. Use '
                                       'idiotproof=False to proceed anyway.')
                else:
                    par.basis = {}

            self.initialize()
            self.read(reader, read_projections)
            if self.hamiltonian.xc.type == 'GLLB':
                self.occupations.calculate(self.wfs)

            self.print_cell_and_parameters()

        self.observers = []

    def read(self, reader, read_projections=True):
        gpaw.io.read(self, reader, read_projections)

    def set(self, **kwargs):
        """Change parameters for calculator.

        Examples::

            calc.set(xc='PBE')
            calc.set(nbands=20, kpts=(4, 1, 1))
        """
        p = self.input_parameters
        self._changed_keywords.update(kwargs)

        if (kwargs.get('h') is not None) and (kwargs.get('gpts') is not None):
            raise TypeError("""You can't use both "gpts" and "h"!""")
        if 'h' in kwargs:
            p['gpts'] = None
        if 'gpts' in kwargs:
            p['h'] = None

        # Special treatment for dictionary parameters:
        for name in ['convergence', 'parallel']:
            if kwargs.get(name) is not None:
                tmp = p[name]
                for key in kwargs[name]:
                    if key not in tmp:
                        raise KeyError('Unknown subparameter "%s" in '
                                       'dictionary parameter "%s"' % (key,
                                                                      name))
                tmp.update(kwargs[name])
                kwargs[name] = tmp

        self.initialized = False

        for key in kwargs:
            if key == 'basis' and str(p['mode']) == 'fd':  # umm what about PW?
                # The second criterion seems buggy, will not touch it.  -Ask
                continue

            if key == 'eigensolver':
                self.wfs.set_eigensolver(None)

            if key in ['fixmom', 'mixer',
                       'verbose', 'txt', 'hund', 'random',
                       'eigensolver', 'idiotproof', 'notify']:
                continue

            if key in ['convergence', 'fixdensity', 'maxiter']:
                self.scf = None
                continue

            # More drastic changes:
            self.scf = None
            self.wfs.set_orthonormalized(False)
            if key in ['lmax', 'width', 'stencils', 'external', 'xc',
                       'poissonsolver']:
                self.hamiltonian = None
                self.occupations = None
            elif key in ['occupations']:
                self.occupations = None
            elif key in ['charge']:
                self.hamiltonian = None
                self.density = None
                self.wfs = EmptyWaveFunctions()
                self.occupations = None
            elif key in ['kpts', 'nbands', 'usesymm', 'symmetry']:
                self.wfs = EmptyWaveFunctions()
                self.occupations = None
            elif key in ['h', 'gpts', 'setups', 'spinpol', 'realspace',
                         'parallel', 'communicator', 'dtype', 'mode']:
                self.density = None
                self.occupations = None
                self.hamiltonian = None
                self.wfs = EmptyWaveFunctions()
            elif key in ['basis']:
                self.wfs = EmptyWaveFunctions()
            elif key in ['parsize', 'parsize_bands', 'parstride_bands']:
                name = {'parsize': 'domain',
                        'parsize_bands': 'band',
                        'parstride_bands': 'stridebands'}[key]
                raise DeprecationWarning(
                    'Keyword argument has been moved ' +
                    "to the 'parallel' dictionary keyword under '%s'." % name)
            else:
                raise TypeError("Unknown keyword argument: '%s'" % key)

        p.update(kwargs)

    def calculate(self, atoms=None, converge=False,
                  force_call_to_set_positions=False):
        """Update PAW calculaton if needed.

        Returns True/False whether a calculation was performed or not."""

        self.timer.start('Initialization')
        if atoms is None:
            atoms = self.atoms

        if self.atoms is None:
            # First time:
            self.initialize(atoms)
            self.set_positions(atoms)
        elif (len(atoms) != len(self.atoms) or
              (atoms.get_atomic_numbers() !=
               self.atoms.get_atomic_numbers()).any() or
              (atoms.get_initial_magnetic_moments() !=
               self.atoms.get_initial_magnetic_moments()).any() or
              (atoms.get_cell() != self.atoms.get_cell()).any() or
              (atoms.get_pbc() != self.atoms.get_pbc()).any()):
            # Drastic changes:
            self.wfs = EmptyWaveFunctions()
            self.occupations = None
            self.density = None
            self.hamiltonian = None
            self.scf = None
            self.initialize(atoms)
            self.set_positions(atoms)
        elif not self.initialized:
            self.initialize(atoms)
            self.set_positions(atoms)
        elif (atoms.get_positions() != self.atoms.get_positions()).any():
            self.density.reset()
            self.set_positions(atoms)
        elif not self.scf.converged:
            # Do not call scf.check_convergence() here as it overwrites
            # scf.converged, and setting scf.converged is the only
            # 'practical' way for a user to force the calculation to proceed
            self.set_positions(atoms)
        elif force_call_to_set_positions:
            self.set_positions(atoms)

        self.timer.stop('Initialization')

        if self.scf.converged:
            return False
        else:
            self.print_cell_and_parameters()

        self.timer.start('SCF-cycle')
        for iter in self.scf.run(self.wfs, self.hamiltonian, self.density,
                                 self.occupations, self.forces):
            self.iter = iter
            self.call_observers(iter)
            self.print_iteration(iter)
        self.timer.stop('SCF-cycle')

        if self.scf.converged:
            self.call_observers(iter, final=True)
            self.print_converged(iter)
        elif converge:
            self.txt.write(oops)
            raise KohnShamConvergenceError(
                'Did not converge!  See text output for help.')

        return True

    def initialize_positions(self, atoms=None):
        """Update the positions of the atoms."""
        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        self.check_atoms()

        spos_ac = atoms.get_scaled_positions() % 1.0

        self.wfs.set_positions(spos_ac)
        self.density.set_positions(spos_ac, self.wfs.rank_a)
        self.hamiltonian.set_positions(spos_ac, self.wfs.rank_a)

        return spos_ac

    def set_positions(self, atoms=None):
        """Update the positions of the atoms and initialize wave functions."""
        spos_ac = self.initialize_positions(atoms)
        self.wfs.initialize(self.density, self.hamiltonian, spos_ac)
        self.wfs.eigensolver.reset()
        self.scf.reset()
        self.forces.reset()
        self.stress_vv = None
        self.dipole_v = None
        self.magmom_av = None
        self.print_positions()

    def initialize(self, atoms=None):
        """Inexpensive initialization."""

        if atoms is None:
            atoms = self.atoms
        else:
            # Save the state of the atoms:
            self.atoms = atoms.copy()

        par = self.input_parameters

        world = par.communicator
        if world is None:
            world = mpi.world
        elif hasattr(world, 'new_communicator'):
            # Check for whether object has correct type already
            #
            # Using isinstance() is complicated because of all the
            # combinations, serial/parallel/debug...
            pass
        else:
            # world should be a list of ranks:
            world = mpi.world.new_communicator(np.asarray(world))
        self.wfs.world = world

        if 'txt' in self._changed_keywords:
            self.set_txt(par.txt)
        self.verbose = par.verbose

        natoms = len(atoms)

        cell_cv = atoms.get_cell() / Bohr
        pbc_c = atoms.get_pbc()
        Z_a = atoms.get_atomic_numbers()
        magmom_av = atoms.get_initial_magnetic_moments()

        self.check_atoms()

        # Generate new xc functional only when it is reset by set
        # XXX sounds like this should use the _changed_keywords dictionary.
        if self.hamiltonian is None or self.hamiltonian.xc is None:
            if isinstance(par.xc, str):
                xc = XC(par.xc)
            else:
                xc = par.xc
        else:
            xc = self.hamiltonian.xc

        mode = par.mode

        if mode == 'fd':
            mode = FD()
        elif mode == 'pw':
            mode = pw.PW()
        elif mode == 'lcao':
            mode = LCAO()
        else:
            assert hasattr(mode, 'name'), str(mode)

        if xc.orbital_dependent and mode.name == 'lcao':
            raise NotImplementedError('LCAO mode does not support '
                                      'orbital-dependent XC functionals.')

        if par.realspace is None:
            realspace = (mode.name != 'pw')
        else:
            realspace = par.realspace
            if mode.name == 'pw':
                assert not realspace

        if par.filter is None and mode.name != 'pw':
            gamma = 1.6
            if par.gpts is not None:
                h = ((np.linalg.inv(cell_cv)**2).sum(0)**-0.5
                     / par.gpts).max()
            else:
                h = (par.h or 0.2) / Bohr

            def filter(rgd, rcut, f_r, l=0):
                gcut = np.pi / h - 2 / rcut / gamma
                f_r[:] = rgd.filter(f_r, rcut * gamma, gcut, l)
        else:
            filter = par.filter

        setups = Setups(Z_a, par.setups, par.basis, par.lmax, xc,
                        filter, world)

        if magmom_av.ndim == 1:
            collinear = True
            magmom_av, magmom_a = np.zeros((natoms, 3)), magmom_av
            magmom_av[:, 2] = magmom_a
        else:
            collinear = False

        magnetic = magmom_av.any()

        spinpol = par.spinpol
        if par.hund:
            if natoms != 1:
                raise ValueError('hund=True arg only valid for single atoms!')
            spinpol = True
            magmom_av[0] = (0, 0, setups[0].get_hunds_rule_moment(par.charge))

        if spinpol is None:
            spinpol = magnetic
        elif magnetic and not spinpol:
            raise ValueError('Non-zero initial magnetic moment for a ' +
                             'spin-paired calculation!')

        if collinear:
            nspins = 1 + int(spinpol)
            ncomp = 1
        else:
            nspins = 1
            ncomp = 2

        if par.usesymm != 'default':
            warnings.warn('Use "symmetry" keyword instead of ' +
                          '"usesymm" keyword')
            par.symmetry = usesymm2symmetry(par.usesymm)

        symm = par.symmetry
        if symm == 'off':
            symm = {'point_group': False, 'time_reversal': False}

        bzkpts_kc = kpts2ndarray(par.kpts, self.atoms)
        kd = KPointDescriptor(bzkpts_kc, nspins, collinear)
        m_av = magmom_av.round(decimals=3)  # round off
        id_a = zip(setups.id_a, *m_av.T)
        symmetry = Symmetry(id_a, cell_cv, atoms.pbc, **symm)
        kd.set_symmetry(atoms, symmetry, comm=world)
        setups.set_symmetry(symmetry)

        if par.gpts is not None:
            N_c = np.array(par.gpts)
        else:
            h = par.h
            if h is not None:
                h /= Bohr
            N_c = get_number_of_grid_points(cell_cv, h, mode, realspace,
                                            kd.symmetry)

        symmetry.check_grid(N_c)

        width = par.width
        if width is None:
            if pbc_c.any():
                width = 0.1  # eV
            else:
                width = 0.0
        else:
            assert par.occupations is None

        if hasattr(self, 'time') or par.dtype == complex:
            dtype = complex
        else:
            if kd.gamma:
                dtype = float
            else:
                dtype = complex

        nao = setups.nao
        nvalence = setups.nvalence - par.charge
        M_v = magmom_av.sum(0)
        M = np.dot(M_v, M_v) ** 0.5

        nbands = par.nbands
        
        orbital_free = any(setup.orbital_free for setup in setups)
        if orbital_free:
            nbands = 1

        if isinstance(nbands, basestring):
            if nbands[-1] == '%':
                basebands = int(nvalence + M + 0.5) // 2
                nbands = int((float(nbands[:-1]) / 100) * basebands)
            else:
                raise ValueError('Integer Expected: Only use a string '
                                 'if giving a percentage of occupied bands')

        if nbands is None:
            nbands = 0
            for setup in setups:
                nbands_from_atom = setup.get_default_nbands()

                # Any obscure setup errors?
                if nbands_from_atom < -(-setup.Nv // 2):
                    raise ValueError('Bad setup: This setup requests %d'
                                     ' bands but has %d electrons.'
                                     % (nbands_from_atom, setup.Nv))
                nbands += nbands_from_atom
            nbands = min(nao, nbands)
        elif nbands > nao and mode.name == 'lcao':
            raise ValueError('Too many bands for LCAO calculation: '
                             '%d bands and only %d atomic orbitals!' %
                             (nbands, nao))

        if nvalence < 0:
            raise ValueError(
                'Charge %f is not possible - not enough valence electrons' %
                par.charge)

        if nbands <= 0:
            nbands = int(nvalence + M + 0.5) // 2 + (-nbands)

        if nvalence > 2 * nbands and not orbital_free:
            raise ValueError('Too few bands!  Electrons: %f, bands: %d'
                             % (nvalence, nbands))

        nbands *= ncomp

        if par.width is not None:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width).')
        if par.fixmom:
            self.text('**NOTE**: please start using '
                      'occupations=FermiDirac(width, fixmagmom=True).')

        if self.occupations is None:
            if par.occupations is None:
                # Create object for occupation numbers:
                if orbital_free:
                    width = 0.0  # even for PBC
                    self.occupations = occupations.TFOccupations(width,
                                                                 par.fixmom)
                else:
                    self.occupations = occupations.FermiDirac(width,
                                                              par.fixmom)
            else:
                self.occupations = par.occupations

            # If occupation numbers are changed, and we have wave functions,
            # recalculate the occupation numbers
            if self.wfs is not None and not isinstance(
                    self.wfs,
                    EmptyWaveFunctions):
                self.occupations.calculate(self.wfs)

        self.occupations.magmom = M_v[2]

        cc = par.convergence

        if mode.name == 'lcao':
            niter_fixdensity = 0
        else:
            niter_fixdensity = None

        if self.scf is None:
            force_crit = cc['forces']
            if force_crit is not None:
                force_crit /= Hartree / Bohr
            self.scf = SCFLoop(
                cc['eigenstates'] / Hartree**2 * nvalence,
                cc['energy'] / Hartree * max(nvalence, 1),
                cc['density'] * nvalence,
                par.maxiter, par.fixdensity,
                niter_fixdensity,
                force_crit)

        parsize_kpt = par.parallel['kpt']
        parsize_domain = par.parallel['domain']
        parsize_bands = par.parallel['band']

        if not realspace:
            pbc_c = np.ones(3, bool)

        if not self.wfs:
            if parsize_domain == 'domain only':  # XXX this was silly!
                parsize_domain = world.size

            parallelization = mpi.Parallelization(world,
                                                  nspins * kd.nibzkpts)
            ndomains = None
            if parsize_domain is not None:
                ndomains = np.prod(parsize_domain)
            if mode.name == 'pw':
                if ndomains > 1:
                    raise ValueError('Planewave mode does not support '
                                     'domain decomposition.')
                ndomains = 1
            parallelization.set(kpt=parsize_kpt,
                                domain=ndomains,
                                band=parsize_bands)
            comms = parallelization.build_communicators()
            domain_comm = comms['d']
            kpt_comm = comms['k']
            band_comm = comms['b']
            kptband_comm = comms['D']
            domainband_comm = comms['K']

            self.comms = comms
            kd.set_communicator(kpt_comm)

            parstride_bands = par.parallel['stridebands']

            # Unfortunately we need to remember that we adjusted the
            # number of bands so we can print a warning if it differs
            # from the number specified by the user.  (The number can
            # be inferred from the input parameters, but it's tricky
            # because we allow negative numbers)
            self.nbands_parallelization_adjustment = -nbands % band_comm.size
            nbands += self.nbands_parallelization_adjustment

            # I would like to give the following error message, but apparently
            # there are cases, e.g. gpaw/test/gw_ppa.py, which involve
            # nbands > nao and are supposed to work that way.
            #if nbands > nao:
            #    raise ValueError('Number of bands %d adjusted for band '
            #                     'parallelization %d exceeds number of atomic '
            #                     'orbitals %d.  This problem can be fixed '
            #                     'by reducing the number of bands a bit.'
            #                     % (nbands, band_comm.size, nao))
            bd = BandDescriptor(nbands, band_comm, parstride_bands)

            if (self.density is not None and
                    self.density.gd.comm.size != domain_comm.size):
                # Domain decomposition has changed, so we need to
                # reinitialize density and hamiltonian:
                if par.fixdensity:
                    raise RuntimeError(
                        'Density reinitialization conflict ' +
                        'with "fixdensity" - specify domain decomposition.')
                self.density = None
                self.hamiltonian = None

            # Construct grid descriptor for coarse grids for wave functions:
            gd = self.grid_descriptor_class(N_c, cell_cv, pbc_c,
                                            domain_comm, parsize_domain)

            # do k-point analysis here? XXX
            args = (gd, nvalence, setups, bd, dtype, world, kd,
                    kptband_comm, self.timer)

            if par.parallel['sl_auto']:
                # Choose scalapack parallelization automatically

                for key, val in par.parallel.items():
                    if (key.startswith('sl_') and key != 'sl_auto'
                            and val is not None):
                        raise ValueError("Cannot use 'sl_auto' together "
                                         "with '%s'" % key)
                max_scalapack_cpus = bd.comm.size * gd.comm.size
                nprow = max_scalapack_cpus
                npcol = 1

                # Get a sort of reasonable number of columns/rows
                while npcol < nprow and nprow % 2 == 0:
                    npcol *= 2
                    nprow //= 2
                assert npcol * nprow == max_scalapack_cpus

                # ScaLAPACK creates trouble if there aren't at least a few
                # whole blocks; choose block size so there will always be
                # several blocks.  This will crash for small test systems,
                # but so will ScaLAPACK in any case
                blocksize = min(-(-nbands // 4), 64)
                sl_default = (nprow, npcol, blocksize)
            else:
                sl_default = par.parallel['sl_default']

            if mode.name == 'lcao':
                # Layouts used for general diagonalizer
                sl_lcao = par.parallel['sl_lcao']
                if sl_lcao is None:
                    sl_lcao = sl_default
                lcaoksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                               gd, bd, domainband_comm, dtype,
                                               nao=nao, timer=self.timer)

                self.wfs = mode(collinear, lcaoksl, *args)

            elif mode.name == 'fd' or mode.name == 'pw':
                # buffer_size keyword only relevant for fdpw
                buffer_size = par.parallel['buffer_size']
                # Layouts used for diagonalizer
                sl_diagonalize = par.parallel['sl_diagonalize']
                if sl_diagonalize is None:
                    sl_diagonalize = sl_default
                diagksl = get_KohnSham_layouts(sl_diagonalize, 'fd',  # XXX
                                               # choice of key 'fd' not so nice
                                               gd, bd, domainband_comm, dtype,
                                               buffer_size=buffer_size,
                                               timer=self.timer)

                # Layouts used for orthonormalizer
                sl_inverse_cholesky = par.parallel['sl_inverse_cholesky']
                if sl_inverse_cholesky is None:
                    sl_inverse_cholesky = sl_default
                if sl_inverse_cholesky != sl_diagonalize:
                    message = 'sl_inverse_cholesky != sl_diagonalize ' \
                        'is not implemented.'
                    raise NotImplementedError(message)
                orthoksl = get_KohnSham_layouts(sl_inverse_cholesky, 'fd',
                                                gd, bd, domainband_comm, dtype,
                                                buffer_size=buffer_size,
                                                timer=self.timer)

                # Use (at most) all available LCAO for initialization
                lcaonbands = min(nbands, nao)

                try:
                    lcaobd = BandDescriptor(lcaonbands, band_comm,
                                            parstride_bands)
                except RuntimeError:
                    initksl = None
                else:
                    # Layouts used for general diagonalizer
                    # (LCAO initialization)
                    sl_lcao = par.parallel['sl_lcao']
                    if sl_lcao is None:
                        sl_lcao = sl_default
                    initksl = get_KohnSham_layouts(sl_lcao, 'lcao',
                                                   gd, lcaobd, domainband_comm,
                                                   dtype, nao=nao,
                                                   timer=self.timer)

                if hasattr(self, 'time'):
                    assert mode.name == 'fd'
                    from gpaw.tddft import TimeDependentWaveFunctions
                    self.wfs = TimeDependentWaveFunctions(
                        par.stencils[0],
                        diagksl,
                        orthoksl,
                        initksl,
                        gd,
                        nvalence,
                        setups,
                        bd,
                        world,
                        kd,
                        kptband_comm,
                        self.timer)
                elif mode.name == 'fd':
                    self.wfs = mode(par.stencils[0], diagksl,
                                    orthoksl, initksl, *args)
                else:
                    assert mode.name == 'pw'
                    self.wfs = mode(diagksl, orthoksl, initksl, *args)
            else:
                self.wfs = mode(self, *args)
        else:
            self.wfs.set_setups(setups)

        if not self.wfs.eigensolver:
            # Number of bands to converge:
            nbands_converge = cc['bands']
            if nbands_converge == 'all':
                nbands_converge = nbands
            elif nbands_converge != 'occupied':
                assert isinstance(nbands_converge, int)
                if nbands_converge < 0:
                    nbands_converge += nbands
            eigensolver = get_eigensolver(par.eigensolver, mode,
                                          par.convergence)
            eigensolver.nbands_converge = nbands_converge
            # XXX Eigensolver class doesn't define an nbands_converge property

            if isinstance(xc, SIC):
                eigensolver.blocksize = 1
            self.wfs.set_eigensolver(eigensolver)

        if self.density is None:
            gd = self.wfs.gd
            if par.stencils[1] != 9:
                # Construct grid descriptor for fine grids for densities
                # and potentials:
                finegd = gd.refine()
            else:
                # Special case (use only coarse grid):
                finegd = gd

            if realspace:
                self.density = RealSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear, par.stencils[1])
            else:
                self.density = pw.ReciprocalSpaceDensity(
                    gd, finegd, nspins, par.charge + setups.core_charge,
                    collinear)

        self.density.initialize(setups, self.timer, magmom_av, par.hund)
        self.density.set_mixer(par.mixer)

        if self.hamiltonian is None:
            gd, finegd = self.density.gd, self.density.finegd
            if realspace:
                self.hamiltonian = RealSpaceHamiltonian(
                    gd, finegd, nspins, setups, self.timer, xc,
                    world, self.wfs.kptband_comm, par.external,
                    collinear, par.poissonsolver, par.stencils[1])
            else:
                self.hamiltonian = pw.ReciprocalSpaceHamiltonian(
                    gd, finegd, self.density.pd2, self.density.pd3,
                    nspins, setups, self.timer, xc, world,
                    self.wfs.kptband_comm, par.external, collinear)

        xc.initialize(self.density, self.hamiltonian, self.wfs,
                      self.occupations)

        self.text()
        self.print_memory_estimate(self.txt, maxdepth=memory_estimate_depth)
        self.txt.flush()

        self.timer.print_info(self)

        if dry_run:
            self.dry_run()

        if realspace and \
                self.hamiltonian.poisson.get_description() == 'FDTD+TDDFT':
            self.hamiltonian.poisson.set_density(self.density)
            self.hamiltonian.poisson.print_messages(self.text)
            self.txt.flush()

        self.initialized = True
        self._changed_keywords.clear()

    def dry_run(self):
        # Can be overridden like in gpaw.atom.atompaw
        self.print_cell_and_parameters()
        self.print_positions()
        self.txt.flush()
        raise SystemExit

    def linearize_to_xc(self, newxc):
        """Linearize Hamiltonian to difference XC functional.
        
        Used in real time TDDFT to perform calculations with various kernels.
        """
        if isinstance(newxc, str):
            newxc = XC(newxc)
        self.txt.write('Linearizing xc-hamiltonian to ' + str(newxc))
        newxc.initialize(self.density, self.hamiltonian, self.wfs,
                         self.occupations)
        self.hamiltonian.linearize_to_xc(newxc, self.density)

    def restore_state(self):
        """After restart, calculate fine density and poisson solution.

        These are not initialized by default.
        TODO: Is this really the most efficient way?
        """
        spos_ac = self.atoms.get_scaled_positions() % 1.0
        self.density.set_positions(spos_ac, self.wfs.rank_a)
        self.density.interpolate_pseudo_density()
        self.density.calculate_pseudo_charge()
        self.hamiltonian.set_positions(spos_ac, self.wfs.rank_a)
        self.hamiltonian.update(self.density)

    def attach(self, function, n=1, *args, **kwargs):
        """Register observer function.

        Call *function* using *args* and
        *kwargs* as arguments.
        
        If *n* is positive, then
        *function* will be called every *n* iterations + the
        final iteration if it would not be otherwise
        
        If *n* is negative, then *function* will only be
        called on iteration *abs(n)*.
        
        If *n* is 0, then *function* will only be called
        on convergence"""

        try:
            slf = function.im_self
        except AttributeError:
            pass
        else:
            if slf is self:
                # function is a bound method of self.  Store the name
                # of the method and avoid circular reference:
                function = function.im_func.func_name

        self.observers.append((function, n, args, kwargs))

    def call_observers(self, iter, final=False):
        """Call all registered callback functions."""
        for function, n, args, kwargs in self.observers:
            call = False
            # Call every n iterations, including the last
            if n > 0:
                if ((iter % n) == 0) != final:
                    call = True
            # Call only on iteration n
            elif n < 0 and not final:
                if iter == abs(n):
                    call = True
            # Call only on convergence
            elif n == 0 and final:
                call = True
            if call:
                if isinstance(function, str):
                    function = getattr(self, function)
                function(*args, **kwargs)

    def get_reference_energy(self):
        return self.wfs.setups.Eref * Hartree

    def write(self, filename, mode='', cmr_params={}, **kwargs):
        """Write state to file.

        use mode='all' to write the wave functions.  cmr_params is a
        dictionary that allows you to specify parameters for CMR
        (Computational Materials Repository).
        """

        self.timer.start('IO')
        gpaw.io.write(self, filename, mode, cmr_params=cmr_params, **kwargs)
        self.timer.stop('IO')

    def get_myu(self, k, s):
        """Return my u corresponding to a certain kpoint and spin - or None"""
        # very slow, but we are sure that we have it
        for u in range(len(self.wfs.kpt_u)):
            if self.wfs.kpt_u[u].k == k and self.wfs.kpt_u[u].s == s:
                return u
        return None

    def get_homo_lumo(self):
        """Return H**O and LUMO eigenvalues."""
        return self.occupations.get_homo_lumo(self.wfs) * Hartree

    def estimate_memory(self, mem):
        """Estimate memory use of this object."""
        for name, obj in [('Density', self.density),
                          ('Hamiltonian', self.hamiltonian),
                          ('Wavefunctions', self.wfs),
                          ]:
            obj.estimate_memory(mem.subnode(name))

    def print_memory_estimate(self, txt=None, maxdepth=-1):
        """Print estimated memory usage for PAW object and components.

        maxdepth is the maximum nesting level of displayed components.

        The PAW object must be initialize()'d, but needs not have large
        arrays allocated."""
        # NOTE.  This should work with --dry-run=N
        #
        # However, the initial overhead estimate is wrong if this method
        # is called within a real mpirun/gpaw-python context.
        if txt is None:
            txt = self.txt
        txt.write('Memory estimate\n')
        txt.write('---------------\n')

        mem_init = maxrss()  # initial overhead includes part of Hamiltonian!
        txt.write('Process memory now: %.2f MiB\n' % (mem_init / 1024.0**2))

        mem = MemNode('Calculator', 0)
        try:
            self.estimate_memory(mem)
        except AttributeError as m:
            txt.write('Attribute error: %r' % m)
            txt.write('Some object probably lacks estimate_memory() method')
            txt.write('Memory breakdown may be incomplete')
        mem.calculate_size()
        mem.write(txt, maxdepth=maxdepth)

    def converge_wave_functions(self):
        """Converge the wave-functions if not present."""

        if not self.wfs or not self.scf:
            self.initialize()
        else:
            self.wfs.initialize_wave_functions_from_restart_file()
            spos_ac = self.atoms.get_scaled_positions() % 1.0
            self.wfs.set_positions(spos_ac)

        no_wave_functions = (self.wfs.kpt_u[0].psit_nG is None)
        converged = self.scf.check_convergence(self.density,
                                               self.wfs.eigensolver, self.wfs,
                                               self.hamiltonian, self.forces)
        if no_wave_functions or not converged:
            self.wfs.eigensolver.error = np.inf
            self.scf.converged = False

            # is the density ok ?
            error = self.density.mixer.get_charge_sloshing()
            criterion = (self.input_parameters['convergence']['density']
                         * self.wfs.nvalence)
            if error < criterion and not self.hamiltonian.xc.orbital_dependent:
                self.scf.fix_density()

            self.calculate()

    def diagonalize_full_hamiltonian(self, nbands=None, scalapack=None, expert=False):
        self.wfs.diagonalize_full_hamiltonian(self.hamiltonian, self.atoms,
                                              self.occupations, self.txt,
                                              nbands, scalapack, expert)

    def check_atoms(self):
        """Check that atoms objects are identical on all processors."""
        if not mpi.compare_atoms(self.atoms, comm=self.wfs.world):
            raise RuntimeError('Atoms objects on different processors ' +
                               'are not identical!')