c = 5.0 H2 = Atoms([ Atom('H', (a / 2, a / 2, (c - R) / 2)), Atom('H', (a / 2, a / 2, (c + R) / 2)) ], cell=(a, a, c)) calc = GPAW(xc=xc, nbands=3, spinpol=False, eigensolver='rmm-diis', txt=txt) H2.set_calculator(calc) H2.get_potential_energy() gsname = exname = 'rraman' rr = ResonantRaman(H2, KSSingles, gsname=gsname, exname=exname, exkwargs={ 'eps': 0.0, 'jend': 1 }) rr.run() # check size kss = KSSingles('rraman-d0.010.eq.ex.gz') assert (len(kss) == 1) rr = ResonantRaman( H2, KSSingles, gsname=gsname, exname=exname, verbose=True,
from ase.vibrations.resonant_raman import ResonantRaman from gpaw.cluster import Cluster from gpaw import GPAW, FermiDirac from gpaw.lrtddft import LrTDDFT h = 0.25 atoms = Cluster('relaxed.traj') atoms.minimal_box(3.5, h=h) # relax the molecule calc = GPAW(h=h, occupations=FermiDirac(width=0.1), eigensolver='cg', symmetry={'point_group': False}, nbands=10, convergence={ 'eigenstates': 1.e-5, 'bands': 4 }) atoms.calc = calc # use only the 4 converged states for linear response calculation rr = ResonantRaman(atoms, LrTDDFT, exkwargs={'jend': 3}) rr.run()
c = 5.0 H2 = Atoms([ Atom('H', (a / 2, a / 2, (c - R) / 2)), Atom('H', (a / 2, a / 2, (c + R) / 2)) ], cell=(a, a, c)) calc = GPAW(xc=xc, nbands=3, spinpol=False, eigensolver='rmm-diis', txt=txt) H2.set_calculator(calc) H2.get_potential_energy() gsname = exname = 'rraman' exkwargs = {'eps': 0.0, 'jend': 1} pz = ResonantRaman(H2, KSSingles, gsname=gsname, exname=exname, exkwargs=exkwargs, overlap=lambda x, y: Overlap(x).pseudo(y)) pz.run() # check size kss = KSSingles('rraman-d0.010.eq.ex.gz') assert (len(kss) == 1) om = 5 # Does Albrecht A work at all ? # ----------------------------- al = Albrecht(H2, KSSingles,