def test_set_get_angle(): "Test that set_angle() and get_angle() in Atoms are consistent" from ase import Atoms atoms = Atoms( 'HHCCHH', [[-1, 1, 0], [-1, -1, 0], [0, 0, 0], [1, 0, 0], [2, 1, 0], [2, -1, 0]]) list = [2, 3, 4] theta = 20 old_angle = atoms.get_angle(*list) atoms.set_angle(*list, angle=old_angle + theta) new_angle = atoms.get_angle(*list) assert abs(new_angle - (old_angle + theta)) < 1.0e-9
def test_qmmm_acn(): import numpy as np import ase.units as units from ase import Atoms from ase.calculators.acn import (ACN, m_me, r_cn, r_mec, sigma_me, sigma_c, sigma_n, epsilon_me, epsilon_c, epsilon_n) from ase.calculators.qmmm import SimpleQMMM, LJInteractionsGeneral, EIQMMM from ase.constraints import FixLinearTriatomic from ase.optimize import BFGS # From https://www.sciencedirect.com/science/article/pii/S0166128099002079 eref = 4.9 * units.kcal / units.mol dref = 3.368 aref = 79.1 sigma = np.array([sigma_me, sigma_c, sigma_n]) epsilon = np.array([epsilon_me, epsilon_c, epsilon_n]) inter = LJInteractionsGeneral(sigma, epsilon, sigma, epsilon, 3) for calc in [ACN(), SimpleQMMM([0, 1, 2], ACN(), ACN(), ACN()), SimpleQMMM([0, 1, 2], ACN(), ACN(), ACN(), vacuum=3.0), EIQMMM([0, 1, 2], ACN(), ACN(), inter), EIQMMM([0, 1, 2], ACN(), ACN(), inter, vacuum=3.0), EIQMMM([3, 4, 5], ACN(), ACN(), inter, vacuum=3.0)]: dimer = Atoms('CCNCCN', [(-r_mec, 0, 0), (0, 0, 0), (r_cn, 0, 0), (r_mec, 3.7, 0), (0, 3.7, 0), (-r_cn, 3.7, 0)]) masses = dimer.get_masses() masses[::3] = m_me dimer.set_masses(masses) dimer.calc = calc fixd = FixLinearTriatomic(triples=[(0, 1, 2), (3, 4, 5)]) dimer.set_constraint(fixd) opt = BFGS(dimer, maxstep=0.04, trajectory=calc.name + '.traj', logfile=calc.name + 'd.log') opt.run(0.001, steps=1000) e0 = dimer.get_potential_energy() d0 = dimer.get_distance(1, 4) a0 = dimer.get_angle(2, 1, 4) fmt = '{0:>25}: {1:.3f} {2:.3f} {3:.1f}' print(fmt.format(calc.name, -e0, d0, a0)) assert abs(e0 + eref) < 0.013 assert abs(d0 - dref) < 0.224 assert abs(a0 - aref) < 2.9 print(fmt.format('reference', eref, dref, aref))
def test_atoms_angle(): from ase import Atoms import numpy as np atoms = Atoms(['O', 'H', 'H'], positions=[[0., 0., 0.119262], [0., 0.763239, -0.477047], [0., -0.763239, -0.477047]]) # Angle no pbc assert abs(atoms.get_angle(1, 0, 2) - 104) < 1e-3 atoms.set_cell([2, 2, 2]) # Across different pbcs atoms.set_pbc([True, False, True]) atoms.wrap() assert abs(atoms.get_angle(1, 0, 2, mic=True) - 104) < 1e-3 # Across all True pbc atoms.set_pbc(True) atoms.wrap() assert abs(atoms.get_angle(1, 0, 2, mic=True) - 104) < 1e-3 # Change Angle old = atoms.get_angle(1, 0, 2, mic=False) atoms.set_angle(1, 0, 2, -10, indices=[2], add=True) new = atoms.get_angle(1, 0, 2, mic=False) diff = old - new - 10 assert abs(diff) < 10e-3 # don't actually change angle using indices old = atoms.get_angle(1, 0, 2, mic=False) atoms.set_angle(1, 0, 2, -10, indices=[2, 1], add=True) new = atoms.get_angle(1, 0, 2, mic=False) diff = old - new assert abs(diff) < 10e-3 # Simple tetrahedron tetra_pos = np.array([[0, 0, 0], [1, 0, 0], [.5, np.sqrt(3) * .5, 0], [.5, np.sqrt(1 / 3.) * .5, np.sqrt(2 / 3.)]]) atoms = Atoms(['H', 'H', 'H', 'H'], positions=tetra_pos - np.array([.2, 0, 0])) angle = 70.5287793655 assert abs(atoms.get_dihedral(0, 1, 2, 3) - angle) < 1e-3 atoms.set_cell([3, 3, 3]) atoms.set_pbc(True) atoms.wrap() assert abs(atoms.get_dihedral(0, 1, 2, 3, mic=True) - angle) < 1e-3
from ase import Atoms import numpy as np atoms = Atoms(['O', 'H', 'H'], positions=[[0., 0., 0.119262], [0., 0.763239, -0.477047], [0., -0.763239, -0.477047]]) # Angle no pbc assert abs(atoms.get_angle(1, 0, 2) - 104) < 1e-3 atoms.set_cell([2, 2, 2]) # Across different pbcs atoms.set_pbc([True, False, True]) atoms.wrap() assert abs(atoms.get_angle(1, 0, 2, mic=True) - 104) < 1e-3 # Across all True pbc atoms.set_pbc(True) atoms.wrap() assert abs(atoms.get_angle(1, 0, 2, mic=True) - 104) < 1e-3 # Simple tetrahedron tetra_pos = np.array([[0, 0, 0], [1, 0, 0], [.5, np.sqrt(3) * .5, 0], [.5, np.sqrt(1/3.) * .5, np.sqrt(2/3.)]]) atoms = Atoms(['H', 'H', 'H', 'H'], positions=tetra_pos - np.array([.2, 0, 0])) angle = 70.5287793655 assert abs(atoms.get_dihedral(0, 1, 2, 3) - angle) < 1e-3 atoms.set_cell([3, 3, 3])
class Conformer(): """ A class for generating and editing 3D conformers of molecules """ def __init__(self, smiles=None, rmg_molecule=None, index=0): self.energy = None self.index = index if (smiles or rmg_molecule): if smiles and rmg_molecule: assert rmg_molecule.isIsomorphic(RMGMolecule( SMILES=smiles)), "SMILES string did not match RMG Molecule object" self.smiles = smiles self.rmg_molecule = rmg_molecule elif rmg_molecule: self.rmg_molecule = rmg_molecule self.smiles = rmg_molecule.toSMILES() else: self.smiles = smiles self.rmg_molecule = RMGMolecule(SMILES=smiles) self.rmg_molecule.updateMultiplicity() self.get_molecules() self.get_geometries() self._symmetry_number = None else: self.smiles = None self.rmg_molecule = None self.rdkit_molecule = None self.ase_molecule = None self.bonds = [] self.angles = [] self.torsions = [] self.cistrans = [] self.chiral_centers = [] self._symmetry_number = None def __repr__(self): return '<Conformer "{}">'.format(self.smiles) def copy(self): copy_conf = Conformer() copy_conf.smiles = self.smiles copy_conf.rmg_molecule = self.rmg_molecule.copy() copy_conf.rdkit_molecule = self.rdkit_molecule.__copy__() copy_conf.ase_molecule = self.ase_molecule.copy() copy_conf.get_geometries() copy_conf.energy = self.energy return copy_conf @property def symmetry_number(self): if not self._symmetry_number: self._symmetry_number = self.calculate_symmetry_number() return self._symmetry_number def get_rdkit_mol(self): """ A method for creating an rdkit geometry from an rmg mol """ assert self.rmg_molecule, "Cannot create an RDKit geometry without an RMG molecule object" RDMol = self.rmg_molecule.toRDKitMol(removeHs=False) rdkit.Chem.AllChem.EmbedMolecule(RDMol) self.rdkit_molecule = RDMol mol_list = AllChem.MolToMolBlock(self.rdkit_molecule).split('\n') for i, atom in enumerate(self.rmg_molecule.atoms): j = i + 4 coords = mol_list[j].split()[:3] for k, coord in enumerate(coords): coords[k] = float(coord) atom.coords = np.array(coords) return self.rdkit_molecule def get_ase_mol(self): """ A method for creating an ase atoms object from an rdkit mol """ if not self.rdkit_molecule: self.get_rdkit_mol() mol_list = AllChem.MolToMolBlock(self.rdkit_molecule).split('\n') ase_atoms = [] for i, line in enumerate(mol_list): if i > 3: try: atom0, atom1, bond, rest = line atom0 = int(atom0) atom0 = int(atom1) bond = float(bond) except ValueError: try: x, y, z, symbol = line.split()[0:4] x = float(x) y = float(y) z = float(z) ase_atoms.append( Atom(symbol=symbol, position=(x, y, z))) except BaseException: continue self.ase_molecule = Atoms(ase_atoms) return self.ase_molecule def get_molecules(self): if not self.rmg_molecule: self.rmg_molecule = RMGMolecule(SMILES=self.smiles) self.rdkit_molecule = self.get_rdkit_mol() self.ase_molecule = self.get_ase_mol() self.get_geometries() return self.rdkit_molecule, self.ase_molecule def view(self): """ A method designed to create a 3D figure of the AutoTST_Molecule with py3Dmol from the rdkit_molecule """ mb = Chem.MolToMolBlock(self.rdkit_molecule) p = py3Dmol.view(width=600, height=600) p.addModel(mb, "sdf") p.setStyle({'stick': {}}) p.setBackgroundColor('0xeeeeee') p.zoomTo() return p.show() def get_bonds(self): """ A method for identifying all of the bonds in a conformer """ bond_list = [] for bond in self.rdkit_molecule.GetBonds(): bond_list.append((bond.GetBeginAtomIdx(), bond.GetEndAtomIdx())) bonds = [] for index, indices in enumerate(bond_list): i, j = indices length = self.ase_molecule.get_distance(i, j) center = False if ((self.rmg_molecule.atoms[i].label) and ( self.rmg_molecule.atoms[j].label)): center = True bond = Bond(index=index, atom_indices=indices, length=length, reaction_center=center) mask = self.get_mask(bond) bond.mask = mask bonds.append(bond) self.bonds = bonds return self.bonds def get_angles(self): """ A method for identifying all of the angles in a conformer """ angle_list = [] for atom1 in self.rdkit_molecule.GetAtoms(): for atom2 in atom1.GetNeighbors(): for atom3 in atom2.GetNeighbors(): if atom1.GetIdx() == atom3.GetIdx(): continue to_add = (atom1.GetIdx(), atom2.GetIdx(), atom3.GetIdx()) if (to_add in angle_list) or ( tuple(reversed(to_add)) in angle_list): continue angle_list.append(to_add) angles = [] for index, indices in enumerate(angle_list): i, j, k = indices degree = self.ase_molecule.get_angle(i, j, k) ang = Angle(index=index, atom_indices=indices, degree=degree, mask=[]) mask = self.get_mask(ang) reaction_center = False angles.append(Angle(index=index, atom_indices=indices, degree=degree, mask=mask, reaction_center=reaction_center)) self.angles = angles return self.angles def get_torsions(self): """ A method for identifying all of the torsions in a conformer """ torsion_list = [] for bond1 in self.rdkit_molecule.GetBonds(): atom1 = bond1.GetBeginAtom() atom2 = bond1.GetEndAtom() if atom1.IsInRing() or atom2.IsInRing(): # Making sure that bond1 we're looking at are not in a ring continue bond_list1 = list(atom1.GetBonds()) bond_list2 = list(atom2.GetBonds()) if not len(bond_list1) > 1 and not len(bond_list2) > 1: # Making sure that there are more than one bond attached to # the atoms we're looking at continue # Getting the 0th and 3rd atom and insuring that atoms # attached to the 1st and 2nd atom are not terminal hydrogens # We also make sure that all of the atoms are properly bound # together # If the above are satisfied, we append a tuple of the torsion our # torsion_list got_atom0 = False got_atom3 = False for bond0 in bond_list1: atomX = bond0.GetOtherAtom(atom1) # if atomX.GetAtomicNum() == 1 and len(atomX.GetBonds()) == 1: # This means that we have a terminal hydrogen, skip this # NOTE: for H_abstraction TSs, a non teminal H should exist # continue if atomX.GetIdx() != atom2.GetIdx(): got_atom0 = True atom0 = atomX for bond2 in bond_list2: atomY = bond2.GetOtherAtom(atom2) # if atomY.GetAtomicNum() == 1 and len(atomY.GetBonds()) == 1: # This means that we have a terminal hydrogen, skip this # continue if atomY.GetIdx() != atom1.GetIdx(): got_atom3 = True atom3 = atomY if not (got_atom0 and got_atom3): # Making sure atom0 and atom3 were not found continue # Looking to make sure that all of the atoms are properly bonded to # eached if ( "SINGLE" in str( self.rdkit_molecule.GetBondBetweenAtoms( atom1.GetIdx(), atom2.GetIdx()).GetBondType()) and self.rdkit_molecule.GetBondBetweenAtoms( atom0.GetIdx(), atom1.GetIdx()) and self.rdkit_molecule.GetBondBetweenAtoms( atom1.GetIdx(), atom2.GetIdx()) and self.rdkit_molecule.GetBondBetweenAtoms( atom2.GetIdx(), atom3.GetIdx())): torsion_tup = (atom0.GetIdx(), atom1.GetIdx(), atom2.GetIdx(), atom3.GetIdx()) already_in_list = False for torsion_entry in torsion_list: a, b, c, d = torsion_entry e, f, g, h = torsion_tup if (b, c) == (f, g) or (b, c) == (g, f): already_in_list = True if not already_in_list: torsion_list.append(torsion_tup) torsions = [] for index, indices in enumerate(torsion_list): i, j, k, l = indices dihedral = self.ase_molecule.get_dihedral(i, j, k, l) tor = Torsion(index=index, atom_indices=indices, dihedral=dihedral, mask=[]) mask = self.get_mask(tor) reaction_center = False torsions.append(Torsion(index=index, atom_indices=indices, dihedral=dihedral, mask=mask, reaction_center=reaction_center)) self.torsions = torsions return self.torsions def get_cistrans(self): """ A method for identifying all possible cistrans bonds in a molecule """ torsion_list = [] cistrans_list = [] for bond1 in self.rdkit_molecule.GetBonds(): atom1 = bond1.GetBeginAtom() atom2 = bond1.GetEndAtom() if atom1.IsInRing() or atom2.IsInRing(): # Making sure that bond1 we're looking at are not in a ring continue bond_list1 = list(atom1.GetBonds()) bond_list2 = list(atom2.GetBonds()) if not len(bond_list1) > 1 and not len(bond_list2) > 1: # Making sure that there are more than one bond attached to # the atoms we're looking at continue # Getting the 0th and 3rd atom and insuring that atoms # attached to the 1st and 2nd atom are not terminal hydrogens # We also make sure that all of the atoms are properly bound # together # If the above are satisfied, we append a tuple of the torsion our # torsion_list got_atom0 = False got_atom3 = False for bond0 in bond_list1: atomX = bond0.GetOtherAtom(atom1) # if atomX.GetAtomicNum() == 1 and len(atomX.GetBonds()) == 1: # This means that we have a terminal hydrogen, skip this # NOTE: for H_abstraction TSs, a non teminal H should exist # continue if atomX.GetIdx() != atom2.GetIdx(): got_atom0 = True atom0 = atomX for bond2 in bond_list2: atomY = bond2.GetOtherAtom(atom2) # if atomY.GetAtomicNum() == 1 and len(atomY.GetBonds()) == 1: # This means that we have a terminal hydrogen, skip this # continue if atomY.GetIdx() != atom1.GetIdx(): got_atom3 = True atom3 = atomY if not (got_atom0 and got_atom3): # Making sure atom0 and atom3 were not found continue # Looking to make sure that all of the atoms are properly bonded to # eached if ( "DOUBLE" in str( self.rdkit_molecule.GetBondBetweenAtoms( atom1.GetIdx(), atom2.GetIdx()).GetBondType()) and self.rdkit_molecule.GetBondBetweenAtoms( atom0.GetIdx(), atom1.GetIdx()) and self.rdkit_molecule.GetBondBetweenAtoms( atom1.GetIdx(), atom2.GetIdx()) and self.rdkit_molecule.GetBondBetweenAtoms( atom2.GetIdx(), atom3.GetIdx())): torsion_tup = (atom0.GetIdx(), atom1.GetIdx(), atom2.GetIdx(), atom3.GetIdx()) already_in_list = False for torsion_entry in torsion_list: a, b, c, d = torsion_entry e, f, g, h = torsion_tup if (b, c) == (f, g) or (b, c) == (g, f): already_in_list = True if not already_in_list: cistrans_list.append(torsion_tup) cistrans = [] for ct_index, indices in enumerate(cistrans_list): i, j, k, l = indices b0 = self.rdkit_molecule.GetBondBetweenAtoms(i, j) b1 = self.rdkit_molecule.GetBondBetweenAtoms(j, k) b2 = self.rdkit_molecule.GetBondBetweenAtoms(k, l) b0.SetBondDir(Chem.BondDir.ENDUPRIGHT) b2.SetBondDir(Chem.BondDir.ENDDOWNRIGHT) Chem.AssignStereochemistry(self.rdkit_molecule, force=True) if "STEREOZ" in str(b1.GetStereo()): if round(self.ase_molecule.get_dihedral(i, j, k, l), -1) == 0: atom = self.rdkit_molecule.GetAtomWithIdx(k) bonds = atom.GetBonds() for bond in bonds: indexes = [ bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()] if not ((sorted([j, k]) == sorted(indexes)) or ( sorted([k, l]) == sorted(indexes))): break for index in indexes: if not (index in indices): l = index break indices = [i, j, k, l] stero = "Z" else: if round( self.ase_molecule.get_dihedral( i, j, k, l), -1) == 180: atom = self.rdkit_molecule.GetAtomWithIdx(k) bonds = atom.GetBonds() for bond in bonds: indexes = [ bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()] if not ((sorted([j, k]) == sorted(indexes)) or ( sorted([k, l]) == sorted(indexes))): break for index in indexes: if not (index in indices): l = index break indices = [i, j, k, l] stero = "E" dihedral = self.ase_molecule.get_dihedral(i, j, k, l) tor = CisTrans(index=ct_index, atom_indices=indices, dihedral=dihedral, mask=[], stero=stero) mask = self.get_mask(tor) reaction_center = False cistrans.append(CisTrans(index=ct_index, atom_indices=indices, dihedral=dihedral, mask=mask, stero=stero ) ) self.cistrans = cistrans return self.cistrans def get_mask(self, geometry): """ Getting the right hand mask for a geometry object: - self: an AutoTST Conformer object - geometry: a Bond, Angle, Dihedral, or Torsion object """ rdkit_atoms = self.rdkit_molecule.GetAtoms() if (isinstance(geometry, autotst.geometry.Torsion) or isinstance(geometry, autotst.geometry.CisTrans)): L1, L0, R0, R1 = geometry.atom_indices # trying to get the left hand side of this torsion LHS_atoms_index = [L0, L1] RHS_atoms_index = [R0, R1] elif isinstance(geometry, autotst.geometry.Angle): a1, a2, a3 = geometry.atom_indices LHS_atoms_index = [a2, a1] RHS_atoms_index = [a2, a3] elif isinstance(geometry, autotst.geometry.Bond): a1, a2 = geometry.atom_indices LHS_atoms_index = [a1] RHS_atoms_index = [a2] complete_RHS = False i = 0 atom_index = RHS_atoms_index[0] while complete_RHS is False: try: RHS_atom = rdkit_atoms[atom_index] for neighbor in RHS_atom.GetNeighbors(): if (neighbor.GetIdx() in RHS_atoms_index) or ( neighbor.GetIdx() in LHS_atoms_index): continue else: RHS_atoms_index.append(neighbor.GetIdx()) i += 1 atom_index = RHS_atoms_index[i] except IndexError: complete_RHS = True mask = [index in RHS_atoms_index for index in range( len(self.ase_molecule))] return mask def get_chiral_centers(self): """ A method to identify """ centers = rdkit.Chem.FindMolChiralCenters( self.rdkit_molecule, includeUnassigned=True) chiral_centers = [] for index, center in enumerate(centers): atom_index, chirality = center chiral_centers.append( ChiralCenter( index=index, atom_index=atom_index, chirality=chirality)) self.chiral_centers = chiral_centers return self.chiral_centers def get_geometries(self): """ A helper method to obtain all geometry things """ self.bonds = self.get_bonds() self.angles = self.get_angles() self.torsions = self.get_torsions() self.cistrans = self.get_cistrans() self.chiral_centers = self.get_chiral_centers() return ( self.bonds, self.angles, self.torsions, self.cistrans, self.chiral_centers) def update_coords(self): """ A function that creates distance matricies for the RMG, ASE, and RDKit molecules and finds which (if any) are different. If one is different, this will update the coordinates of the other two with the different one. If all three are different, nothing will happen. If all are the same, nothing will happen. """ rdkit_dm = rdkit.Chem.rdmolops.Get3DDistanceMatrix(self.rdkit_molecule) ase_dm = self.ase_molecule.get_all_distances() l = len(self.rmg_molecule.atoms) rmg_dm = np.zeros((l, l)) for i, atom_i in enumerate(self.rmg_molecule.atoms): for j, atom_j in enumerate(self.rmg_molecule.atoms): rmg_dm[i][j] = np.linalg.norm(atom_i.coords - atom_j.coords) d1 = round(abs(rdkit_dm - ase_dm).max(), 3) d2 = round(abs(rdkit_dm - rmg_dm).max(), 3) d3 = round(abs(ase_dm - rmg_dm).max(), 3) if np.all(np.array([d1, d2, d3]) > 0): return False, None if np.any(np.array([d1, d2, d3]) > 0): if d1 == 0: diff = "rmg" self.update_coords_from("rmg") elif d2 == 0: diff = "ase" self.update_coords_from("ase") else: diff = "rdkit" self.update_coords_from("rdkit") return True, diff else: return True, None def update_coords_from(self, mol_type="ase"): """ A method to update the coordinates of the RMG, RDKit, and ASE objects with a chosen object. """ possible_mol_types = ["ase", "rmg", "rdkit"] assert (mol_type.lower() in possible_mol_types), "Please specifiy a valid mol type. Valid types are {}".format( possible_mol_types) if mol_type.lower() == "rmg": conf = self.rdkit_molecule.GetConformers()[0] ase_atoms = [] for i, atom in enumerate(self.rmg_molecule.atoms): x, y, z = atom.coords symbol = atom.symbol conf.SetAtomPosition(i, [x, y, z]) ase_atoms.append(Atom(symbol=symbol, position=(x, y, z))) self.ase_molecule = Atoms(ase_atoms) # self.calculate_symmetry_number() elif mol_type.lower() == "ase": conf = self.rdkit_molecule.GetConformers()[0] for i, position in enumerate(self.ase_molecule.get_positions()): self.rmg_molecule.atoms[i].coords = position conf.SetAtomPosition(i, position) # self.calculate_symmetry_number() elif mol_type.lower() == "rdkit": mol_list = AllChem.MolToMolBlock(self.rdkit_molecule).split('\n') for i, atom in enumerate(self.rmg_molecule.atoms): j = i + 4 coords = mol_list[j].split()[:3] for k, coord in enumerate(coords): coords[k] = float(coord) atom.coords = np.array(coords) self.get_ase_mol() # self.calculate_symmetry_number() def set_bond_length(self, bond_index, length): """ This is a method to set bond lengths Variabels: - bond_index (int): the index of the bond you want to edit - length (float, int): the distance you want to set the bond (in angstroms) """ assert isinstance(length, (float, int)) matched = False for bond in self.bonds: if bond.index == bond_index: matched = True break if not matched: logging.info("Angle index provided is out of range. Nothing was changed.") return self i, j = bond.atom_indices self.ase_molecule.set_distance( a0=i, a1=j, distance=length, mask=bond.mask, fix=0 ) bond.length = length self.update_coords_from(mol_type="ase") return self def set_angle(self, angle_index, angle): """ A method that will set the angle of an Angle object accordingly """ assert isinstance( angle, (int, float)), "Plese provide a float or an int for the angle" matched = False for a in self.angles: if a.index == angle_index: matched = True break if not matched: logging.info("Angle index provided is out of range. Nothing was changed.") return self i, j, k = a.atom_indices self.ase_molecule.set_angle( a1=i, a2=j, a3=k, angle=angle, mask=a.mask ) a.degree = angle self.update_coords_from(mol_type="ase") return self def set_torsion(self, torsion_index, dihedral): """ A method that will set the diehdral angle of a Torsion object accordingly. """ assert isinstance( dihedral, (int, float)), "Plese provide a float or an int for the diehdral angle" matched = False for torsion in self.torsions: if torsion.index == torsion_index: matched = True break if not matched: logging.info("Torsion index provided is out of range. Nothing was changed.") return self i, j, k, l = torsion.atom_indices self.ase_molecule.set_dihedral( a1=i, a2=j, a3=k, a4=l, angle=dihedral, mask=torsion.mask ) torsion.dihedral = dihedral self.update_coords_from(mol_type="ase") return self def set_cistrans(self, cistrans_index, stero="E"): """ A module that will set a corresponding cistrans bond to the proper E/Z config """ assert stero.upper() in [ "E", "Z"], "Please specify a valid stero direction." matched = False for cistrans in self.cistrans: if cistrans.index == cistrans_index: matched = True break if not matched: logging.info("CisTrans index provided is out of range. Nothing was changed.") return self if cistrans.stero == stero.upper(): self.update_coords_from("ase") return self else: cistrans.stero = stero.upper() i, j, k, l = cistrans.atom_indices self.ase_molecule.rotate_dihedral( a1=i, a2=j, a3=k, a4=l, angle=float(180), mask=cistrans.mask ) cistrans.stero = stero.upper() self.update_coords_from(mol_type="ase") return self def set_chirality(self, chiral_center_index, stero="R"): """ A module that can set the orientation of a chiral center. """ assert stero.upper() in ["R", "S"], "Specify a valid stero orientation" centers_dict = { 'R': Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CW, 'S': Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CCW } assert isinstance(chiral_center_index, int), "Please provide an integer for the index" rdmol = self.rdkit_molecule.__copy__() match = False for chiral_center in self.chiral_centers: if chiral_center.index == chiral_center_index: match = True break if not match: logging.info("ChiralCenter index provided is out of range. Nothing was changed") return self rdmol.GetAtomWithIdx(chiral_center.atom_index).SetChiralTag( centers_dict[stero.upper()]) rdkit.Chem.rdDistGeom.EmbedMolecule(rdmol) old_torsions = self.torsions[:] + self.cistrans[:] self.rdkit_molecule = rdmol self.update_coords_from(mol_type="rdkit") # Now resetting dihedral angles in case if they changed. for torsion in old_torsions: i, j, k, l = torsion.atom_indices self.ase_molecule.set_dihedral( a1=i, a2=j, a3=k, a4=l, mask=torsion.mask, angle=torsion.dihedral, ) self.update_coords_from(mol_type="ase") return self def calculate_symmetry_number(self): from rmgpy.qm.symmetry import PointGroupCalculator from rmgpy.qm.qmdata import QMData atom_numbers = self.ase_molecule.get_atomic_numbers() coordinates = self.ase_molecule.get_positions() qmdata = QMData( groundStateDegeneracy=1, # Only needed to check if valid QMData numberOfAtoms=len(atom_numbers), atomicNumbers=atom_numbers, atomCoords=(coordinates, str('angstrom')), energy=(0.0, str('kcal/mol')) # Only needed to avoid error ) settings = type(str(''), (), dict(symmetryPath=str( 'symmetry'), scratchDirectory="."))() # Creates anonymous class pgc = PointGroupCalculator(settings, self.smiles, qmdata) pg = pgc.calculate() #os.remove("{}.symm".format(self.smiles)) if pg is not None: symmetry_number = pg.symmetryNumber else: symmetry_number = 1 return symmetry_number
class AutoTST_Molecule(): """ A class that allows for one to create RMG, RDKit and ASE molecules from a single string with identical atom indicies Inputs: * smiles (str): a SMILES string that describes the molecule of interest * rmg_molecule (RMG Molecule object): an rmg molecule that we can extract information from """ def __init__(self, smiles=None, rmg_molecule=None): assert ( smiles or rmg_molecule ), "Please provide a SMILES string and / or an RMG Molecule object." if smiles and rmg_molecule: assert rmg_molecule.isIsomorphic( Molecule(SMILES=smiles )), "SMILES string did not match RMG Molecule object" self.smiles = smiles self.rmg_molecule = rmg_molecule elif rmg_molecule: self.rmg_molecule = rmg_molecule self.smiles = rmg_molecule.toSMILES() else: self.smiles = smiles self.rmg_molecule = Molecule(SMILES=smiles) self.get_rdkit_molecule() self.set_rmg_coords("RDKit") self.get_ase_molecule() self.get_torsions() self.get_angles() self.get_bonds() def __repr__(self): return '<AutoTST Molecule "{0}">'.format(self.smiles) def get_rdkit_molecule(self): """ A method to create an RDKit Molecule from the rmg_molecule. Indicies will be the same as in the RMG Molecule """ RDMol = self.rmg_molecule.toRDKitMol(removeHs=False) rdkit.Chem.AllChem.EmbedMolecule(RDMol) self.rdkit_molecule = RDMol def get_ase_molecule(self): """ A method to create an ASE Molecule from the rdkit_molecule. Indicies will be the same as in the RMG and RDKit Molecule. """ mol_list = AllChem.MolToMolBlock(self.rdkit_molecule).split('\n') ase_atoms = [] for i, line in enumerate(mol_list): if i > 3: try: atom0, atom1, bond, rest = line atom0 = int(atom0) atom0 = int(atom1) bond = float(bond) except ValueError: try: x, y, z, symbol = line.split()[0:4] x = float(x) y = float(y) z = float(z) ase_atoms.append( Atom(symbol=symbol, position=(x, y, z))) except: continue self.ase_molecule = Atoms(ase_atoms) return self.ase_molecule def view_mol(self): """ A method designed to create a 3D figure of the AutoTST_Molecule with py3Dmol from the rdkit_molecule """ mb = Chem.MolToMolBlock(self.rdkit_molecule) p = py3Dmol.view(width=400, height=400) p.addModel(mb, "sdf") p.setStyle({'stick': {}}) p.setBackgroundColor('0xeeeeee') p.zoomTo() return p.show() ############################################################################# def get_bonds(self): rdmol_copy = self.rdkit_molecule bond_list = [] for bond in rdmol_copy.GetBonds(): bond_list.append((bond.GetBeginAtomIdx(), bond.GetEndAtomIdx())) bonds = [] for indices in bond_list: i, j = indices length = self.ase_molecule.get_distance(i, j) reaction_center = "No" bond = Bond(indices=indices, length=length, reaction_center=reaction_center) bonds.append(bond) self.bonds = bonds return self.bonds def get_angles(self): rdmol_copy = self.rdkit_molecule angle_list = [] for atom1 in rdmol_copy.GetAtoms(): for atom2 in atom1.GetNeighbors(): for atom3 in atom2.GetNeighbors(): if atom1.GetIdx() == atom3.GetIdx(): continue to_add = (atom1.GetIdx(), atom2.GetIdx(), atom3.GetIdx()) if (to_add in angle_list) or (tuple(reversed(to_add)) in angle_list): continue angle_list.append(to_add) angles = [] for indices in angle_list: i, j, k = indices degree = self.ase_molecule.get_angle(i, j, k) ang = Angle(indices=indices, degree=degree, left_mask=[], right_mask=[]) left_mask = self.get_left_mask(ang) right_mask = self.get_right_mask(ang) reaction_center = "No" angles.append( Angle(indices, degree, left_mask, right_mask, reaction_center)) self.angles = angles return self.angles def get_torsions(self): rdmol_copy = self.rdkit_molecule torsion_list = [] cistrans_list = [] for bond1 in rdmol_copy.GetBonds(): atom1 = bond1.GetBeginAtom() atom2 = bond1.GetEndAtom() if atom1.IsInRing() or atom2.IsInRing(): # Making sure that bond1 we're looking at are not in a ring continue bond_list1 = list(atom1.GetBonds()) bond_list2 = list(atom2.GetBonds()) if not len(bond_list1) > 1 and not len(bond_list2) > 1: # Making sure that there are more than one bond attached to # the atoms we're looking at continue # Getting the 0th and 3rd atom and insuring that atoms # attached to the 1st and 2nd atom are not terminal hydrogens # We also make sure that all of the atoms are properly bound together # If the above are satisfied, we append a tuple of the torsion our torsion_list got_atom0 = False got_atom3 = False for bond0 in bond_list1: atomX = bond0.GetOtherAtom(atom1) # if atomX.GetAtomicNum() == 1 and len(atomX.GetBonds()) == 1: # This means that we have a terminal hydrogen, skip this # NOTE: for H_abstraction TSs, a non teminal H should exist # continue if atomX.GetIdx() != atom2.GetIdx(): got_atom0 = True atom0 = atomX for bond2 in bond_list2: atomY = bond2.GetOtherAtom(atom2) # if atomY.GetAtomicNum() == 1 and len(atomY.GetBonds()) == 1: # This means that we have a terminal hydrogen, skip this # continue if atomY.GetIdx() != atom1.GetIdx(): got_atom3 = True atom3 = atomY if not (got_atom0 and got_atom3): # Making sure atom0 and atom3 were not found continue # Looking to make sure that all of the atoms are properly bonded to eached if ("SINGLE" in str( rdmol_copy.GetBondBetweenAtoms( atom1.GetIdx(), atom2.GetIdx()).GetBondType()) and rdmol_copy.GetBondBetweenAtoms(atom0.GetIdx(), atom1.GetIdx()) and rdmol_copy.GetBondBetweenAtoms(atom1.GetIdx(), atom2.GetIdx()) and rdmol_copy.GetBondBetweenAtoms(atom2.GetIdx(), atom3.GetIdx())): torsion_tup = (atom0.GetIdx(), atom1.GetIdx(), atom2.GetIdx(), atom3.GetIdx()) already_in_list = False for torsion_entry in torsion_list: a, b, c, d = torsion_entry e, f, g, h = torsion_tup if (b, c) == (f, g) or (b, c) == (g, f): already_in_list = True if not already_in_list: torsion_list.append(torsion_tup) if ("DOUBLE" in str( rdmol_copy.GetBondBetweenAtoms( atom1.GetIdx(), atom2.GetIdx()).GetBondType()) and rdmol_copy.GetBondBetweenAtoms(atom0.GetIdx(), atom1.GetIdx()) and rdmol_copy.GetBondBetweenAtoms(atom1.GetIdx(), atom2.GetIdx()) and rdmol_copy.GetBondBetweenAtoms(atom2.GetIdx(), atom3.GetIdx())): torsion_tup = (atom0.GetIdx(), atom1.GetIdx(), atom2.GetIdx(), atom3.GetIdx()) already_in_list = False for torsion_entry in torsion_list: a, b, c, d = torsion_entry e, f, g, h = torsion_tup if (b, c) == (f, g) or (b, c) == (g, f): already_in_list = True if not already_in_list: cistrans_list.append(torsion_tup) torsions = [] cistrans = [] for indices in torsion_list: i, j, k, l = indices dihedral = self.ase_molecule.get_dihedral(i, j, k, l) tor = Torsion(indices=indices, dihedral=dihedral, left_mask=[], right_mask=[]) left_mask = self.get_left_mask(tor) right_mask = self.get_right_mask(tor) reaction_center = "No" torsions.append( Torsion(indices, dihedral, left_mask, right_mask, reaction_center)) for indices in cistrans_list: i, j, k, l = indices dihedral = self.ase_molecule.get_dihedral(i, j, k, l) tor = CisTrans(indices=indices, dihedral=dihedral, left_mask=[], right_mask=[]) left_mask = self.get_left_mask(tor) right_mask = self.get_right_mask(tor) reaction_center = "No" cistrans.append( CisTrans(indices, dihedral, left_mask, right_mask, reaction_center)) self.torsions = torsions self.cistrans = cistrans return self.torsions def get_right_mask(self, torsion_or_angle): rdmol_copy = self.rdkit_molecule rdkit_atoms = rdmol_copy.GetAtoms() if (isinstance(torsion_or_angle, autotst.geometry.Torsion) or isinstance(torsion_or_angle, autotst.geometry.CisTrans)): L1, L0, R0, R1 = torsion_or_angle.indices # trying to get the left hand side of this torsion LHS_atoms_index = [L0, L1] RHS_atoms_index = [R0, R1] elif isinstance(torsion_or_angle, autotst.geometry.Angle): a1, a2, a3 = torsion_or_angle.indices LHS_atoms_index = [a2, a1] RHS_atoms_index = [a2, a3] complete_RHS = False i = 0 atom_index = RHS_atoms_index[0] while complete_RHS is False: try: RHS_atom = rdkit_atoms[atom_index] for neighbor in RHS_atom.GetNeighbors(): if (neighbor.GetIdx() in RHS_atoms_index) or (neighbor.GetIdx() in LHS_atoms_index): continue else: RHS_atoms_index.append(neighbor.GetIdx()) i += 1 atom_index = RHS_atoms_index[i] except IndexError: complete_RHS = True right_mask = [ index in RHS_atoms_index for index in range(len(self.ase_molecule)) ] return right_mask def get_left_mask(self, torsion_or_angle): rdmol_copy = self.rdkit_molecule rdkit_atoms = rdmol_copy.GetAtoms() if (isinstance(torsion_or_angle, autotst.geometry.Torsion) or isinstance(torsion_or_angle, autotst.geometry.CisTrans)): L1, L0, R0, R1 = torsion_or_angle.indices # trying to get the left hand side of this torsion LHS_atoms_index = [L0, L1] RHS_atoms_index = [R0, R1] elif isinstance(torsion_or_angle, autotst.geometry.Angle): a1, a2, a3 = torsion_or_angle.indices LHS_atoms_index = [a2, a1] RHS_atoms_index = [a2, a3] complete_LHS = False i = 0 atom_index = LHS_atoms_index[0] while complete_LHS is False: try: LHS_atom = rdkit_atoms[atom_index] for neighbor in LHS_atom.GetNeighbors(): if (neighbor.GetIdx() in LHS_atoms_index) or (neighbor.GetIdx() in RHS_atoms_index): continue else: LHS_atoms_index.append(neighbor.GetIdx()) i += 1 atom_index = LHS_atoms_index[i] except IndexError: complete_LHS = True left_mask = [ index in LHS_atoms_index for index in range(len(self.ase_molecule)) ] return left_mask def set_rmg_coords(self, molecule_base): if molecule_base == "RDKit": mol_list = AllChem.MolToMolBlock(self.rdkit_molecule).split('\n') for i, atom in enumerate(self.rmg_molecule.atoms): j = i + 4 coords = mol_list[j].split()[:3] for k, coord in enumerate(coords): coords[k] = float(coord) atom.coords = np.array(coords) elif molecule_base == "ASE": for i, position in enumerate(self.ase_molecule.get_positions()): self.rmg_molecule.atoms[i].coords = position def update_from_rdkit_mol(self): # In order to update the ase molecule you simply need to rerun the get_ase_molecule method self.get_ase_molecule() self.set_rmg_coords("RDKit") # Getting the new torsion angles self.get_torsions() def update_from_ase_mol(self): self.set_rmg_coords("ASE") # setting the geometries of the rdkit molecule positions = self.ase_molecule.get_positions() conf = self.rdkit_molecule.GetConformers()[0] for i, atom in enumerate(self.rdkit_molecule.GetAtoms()): conf.SetAtomPosition(i, positions[i]) # Getting the new torsion angles self.get_torsions() def update_from_rmg_mol(self): conf = self.rdkit_molecule.GetConformers()[0] ase_atoms = [] for i, atom in enumerate(self.rmg_molecule.atoms): x, y, z = atom.coords symbol = atom.symbol conf.SetAtomPosition(i, [x, y, z]) ase_atoms.append(Atom(symbol=symbol, position=(x, y, z))) self.ase_molecule = Atoms(ase_atoms) # Getting the new torsion angles self.get_torsions()
mol.set_calculator(calc) fix = {fix} change = {change} bonds = [] angles = [] dihedrals = [] for fi in fix: if len(fi) == 2: #careful: atom indices in the fix lists start at 1 bondlength = mol.get_distance(fi[0] - 1, fi[1] - 1) bonds.append([bondlength,[fi[0] - 1, fi[1] - 1]]) if len(fi) == 3: #careful: atom indices in the fix lists start at 1 angle = mol.get_angle(fi[0]-1,fi[1]-1,fi[2]-1) * np.pi / 180 angles.append([angle,[fi[0]-1,fi[1]-1,fi[2]-1]]) if len(fi) == 4: #careful: atom indices in the fix lists start at 1 dihed = mol.get_dihedral(fi[0]-1,fi[1]-1,fi[2]-1,fi[3]-1) * np.pi / 180 dihedrals.append([dihed,[fi[0]-1,fi[1]-1,fi[2]-1,fi[3]-1]]) for ci in change: if len(ci) == 3: #careful: atom indices in the fix lists start at 1 bondlength = ci[2] bonds.append([bondlength,[ci[0] - 1, ci[1] - 1]]) if len(ci) == 4: #careful: atom indices in the fix lists start at 1 angle = ci[3] * np.pi / 180 angles.append([angle,[ci[0]-1,ci[1]-1,ci[2]-1]]) if len(ci) == 5:
from ase import Atoms import numpy as np atoms = Atoms(['O', 'H', 'H'], positions=[[0., 0., 0.119262], [0., 0.763239, -0.477047], [0., -0.763239, -0.477047]]) # Angle no pbc assert abs(atoms.get_angle(1, 0, 2) - 104) < 1e-3 atoms.set_cell([2, 2, 2]) # Across different pbcs atoms.set_pbc([True, False, True]) atoms.wrap() assert abs(atoms.get_angle(1, 0, 2, mic=True) - 104) < 1e-3 # Across all True pbc atoms.set_pbc(True) atoms.wrap() assert abs(atoms.get_angle(1, 0, 2, mic=True) - 104) < 1e-3 # Change Angle old = atoms.get_angle(1, 0, 2, mic=False) atoms.set_angle(1, 0, 2, -10, indices=[2], add=True) new = atoms.get_angle(1, 0, 2, mic=False) diff = old - new - 10 assert abs(diff) < 10e-3 #don't actually change angle using indices old = atoms.get_angle(1, 0, 2, mic=False)
#apply the constraints: fix = {fix} change = {change} release = {release} bonds = [] angles = [] dihedrals = [] for f in fix: if len(f) == 3: dist = mol.get_distance(f[0] - 1, f[1] - 1) #ase enumerates atoms starting from zero bonds.append([dist, [f[0] - 1, f[1] - 1]]) if len(f) == 3: angle = mol.get_angle(f[0] - 1, f[1] - 1, f[2] - 1) #ase enumerates atoms starting from zero angle *= pi / 180. angles.append([angle, [f[0] - 1, f[1] - 1, f[2] - 1]]) if len(f) == 4: dih = mol.get_dihedral(f[0] - 1, f[1] - 1, f[2] - 1, f[3] - 1) #ase enumerates atoms starting from zero dih *= pi / 180. dihedrals.append([dih, [f[0] - 1, f[1] - 1, f[2] - 1, f[3] - 1]]) for c in change: if len(c) == 3: bonds.append([c[2], [c[0] - 1, c[1] - 1]]) if len(c) == 4: angle = c[3] * pi / 180. angles.append([angle, [c[0] - 1, c[1] - 1, c[2] - 1]]) if len(c) == 5: dih = c[4] * pi / 180.
def Gradient(Elements, Image, ImageNo, GuessNo, output, dummy_variable): #output is for labeling the process #Creates a directory for each image, at each stage omitoutput = os.system('mkdir -p ./Molecule-%s/Image%s' % (str(GuessNo), str(ImageNo))) os.chdir('Molecule-%s/Image%s' % (str(GuessNo), str(ImageNo))) #If a gradient has already been generated for a given image it will skip it SaveGradient = 'Gradient-%s-%s' % (str(GuessNo), str(ImageNo)) os.system('ls --ignore \'INPUT*\' > CheckGradTemp') if SaveGradient in open('CheckGradTemp').read(): os.system('rm CheckGradTemp') f1 = open('Gradient-%s-%s' % (str(GuessNo), str(ImageNo)), 'r') Ftemp = f1.readlines() F = [] for i in range(0, len(Ftemp)): force = filter(None, Ftemp[i][2:-2].split(' ')) Newline = [] for k in range(0, len(force)): Newline.append(float(force[k])) F.append(Newline) print 'Gradient obtained for Guess No %s and Image No %s' % ( str(GuessNo), str(ImageNo)) else: os.system('rm CheckGradTemp') # Set up the molecule by specifying atomic positions and atomic number Molecule = Atoms(numbers=Elements, positions=Image, pbc=(0, 0, 0)) write('Molecule-%s-%s-start.xyz' % (str(GuessNo), str(ImageNo)), Molecule) # Center the molecule in the cell with some vacuum around Molecule.center(vacuum=6.0) ##FIX: const = FixAtoms(mask=Molecule.positions[22, :]) #blah Molecule.set_constraint(const) #HERE!!! # Run the relaxation for each energy shift, and print out the # corresponding total energy, bond length and angle starttime = time.time() calc = LAMMPS('Molecule', parameters={ 'pair_style': 'airebo 3.0 1 1', 'pair_coeff': ['* * ../../CH.airebo C H'], 'mass': ['1 12.0107', '2 1.00794'] }, tmp_dir='./', keep_tmp_files=True, no_data_file=False) #files = ['../CH.airebo'] \n min_style fire \n unfix fix_nve','run': '1', , 'minimize': '10e-12 10e-14 100000 100000' Molecule.set_calculator(calc) F = Molecule.get_forces() #print calculation_required(Molecule, 'energy') E = Molecule.get_potential_energy() #print 'F-%s-%s' % (str(GuessNo), str(ImageNo)), 'is', F, 'type F is; ',type(F), np.shape(F) f2 = open(SaveGradient, 'w').write(str(F)) f3 = open('Energy', 'w').write(str(E)) AngleCNNC = Molecule.get_dihedral([3, 1, 0, 2]) AngleCCNN = Molecule.get_dihedral([7, 3, 1, 0]) AngleNNCC = Molecule.get_dihedral([1, 0, 2, 6]) AngleCNN = Molecule.get_angle([3, 1, 0]) AngleNNC = Molecule.get_angle([1, 0, 2]) AngleCCN = Molecule.get_angle([7, 3, 1]) f4 = open('CNNCandCCNNandNNCC', 'w').write( str(AngleCNNC) + '\t' + str(AngleCCNN) + '\t' + str(AngleNNCC)) f5 = open('CNNandNNCandCCN', 'w').write( str(AngleCNN) + '\t' + str(AngleNNC) + '\t' + str(AngleCCN)) #endtime = time.time() #walltime = endtime - starttime #print 'Wall time: %.5f' % walltime #print # Make the output more readable #client.close() output.put((ImageNo, F))
def fix_cyclopropenyl(atoms: Atoms, mol: pybel.Molecule) -> Atoms: """Detect cyclopropenyl groups and assure they are planar. Args: atoms: Object holding the 3D positions mol: Object holidng the bonding information Returns: Version of atoms with the rings flattened """ # Find cyclopropenyl groups smarts = pybel.Smarts('C1=C[C+]1') rings = smarts.findall(mol) if len(rings) == 0: return atoms # no changes # For each ring, flatten it atoms = atoms.copy() g = get_bonding_graph(mol) for ring in rings: ring = tuple(x - 1 for x in rings[0]) # Pybel is 1-indexed # Get the normal of the ring normal = np.cross(*np.subtract(atoms.positions[ring[:2], :], atoms.positions[ring[2], :])) normal /= np.linalg.norm(normal) # Adjust the groups attached to each member of the ring for ring_atom in ring: # Get the ID of the group bonded to it bonded_atom = next(r for r in g[ring_atom] if r not in ring) # Determine the atoms that are part of that functional group h = g.copy() h.remove_edge(ring_atom, bonded_atom) a, b = nx.connected_components(h) mask = np.zeros((len(atoms), ), dtype=bool) if bonded_atom in a: mask[list(a)] = True else: mask[list(b)] = True # Get the rotation angle bond_vector = atoms.positions[bonded_atom, :] - atoms.positions[ ring_atom, :] angle = np.dot(bond_vector, normal) / np.linalg.norm(bond_vector) rot_angle = np.arccos(angle) - np.pi / 2 logger.debug(f'Rotating by {rot_angle} radians') # Perform the rotation rotation_axis = np.cross(bond_vector, normal) atoms._masked_rotate(atoms.positions[ring_atom], rotation_axis, rot_angle, mask) # make the atom at a 150 angle with the the ring too another_ring = next(r for r in ring if r != ring_atom) atoms.set_angle(another_ring, ring_atom, bonded_atom, 150, mask=mask) assert np.isclose( atoms.get_angle(another_ring, ring_atom, bonded_atom), 150).all() # Make sure it worked bond_vector = atoms.positions[bonded_atom, :] - atoms.positions[ ring_atom, :] angle = np.dot(bond_vector, normal) / np.linalg.norm(bond_vector) final_angle = np.arccos(angle) assert np.isclose(final_angle, np.pi / 2).all() logger.info( f'Detected {len(rings)} cyclopropenyl rings. Ensured they are planar.' ) return atoms
"Test that set_angle() and get_angle() in Atoms are consistent" from ase import Atoms atoms = Atoms( 'HHCCHH', [[-1, 1, 0], [-1, -1, 0], [0, 0, 0], [1, 0, 0], [2, 1, 0], [2, -1, 0]]) list = [2, 3, 4] theta = 0.1 old_angle = atoms.get_angle(list) atoms.set_angle(list, old_angle + theta) new_angle = atoms.get_angle(list) assert abs(new_angle - (old_angle + theta)) < 1.0e-9
"Test that set_angle() and get_angle() in Atoms are consistent" from ase import Atoms atoms = Atoms('HHCCHH', [[-1, 1, 0], [-1, -1, 0], [0, 0, 0], [1, 0, 0], [2, 1, 0], [2, -1, 0]]) list = [2, 3, 4] theta = 0.1 old_angle = atoms.get_angle(list) atoms.set_angle(list, old_angle + theta) new_angle = atoms.get_angle(list) assert abs(new_angle - (old_angle + theta)) < 1.0e-9
from ase import Atoms import numpy as np atoms = Atoms(['O', 'H', 'H'], positions=[[0., 0., 0.119262], [0., 0.763239, -0.477047], [0., -0.763239, -0.477047]]) # Angle no pbc assert abs(atoms.get_angle(1, 0, 2) - 104) < 1e-3 atoms.set_cell([2, 2, 2]) # Across different pbcs atoms.set_pbc([True, False, True]) atoms.wrap() assert abs(atoms.get_angle(1, 0, 2, mic=True) - 104) < 1e-3 # Across all True pbc atoms.set_pbc(True) atoms.wrap() assert abs(atoms.get_angle(1, 0, 2, mic=True) - 104) < 1e-3 # Simple tetrahedron tetra_pos = np.array([[0, 0, 0], [1, 0, 0], [.5, np.sqrt(3) * .5, 0], [.5, np.sqrt(1 / 3.) * .5, np.sqrt(2 / 3.)]]) atoms = Atoms(['H', 'H', 'H', 'H'], positions=tetra_pos - np.array([.2, 0, 0])) angle = 70.5287793655 assert abs(atoms.get_dihedral(0, 1, 2, 3) - angle) < 1e-3 atoms.set_cell([3, 3, 3])