def __init__(self, db_name, feature_type, dataset_type, json_asm2id, max_instructions, max_num_vertices, encoder, batch_size, flags=None): self.db_name = db_name self.feature_type = feature_type self.dataset_type = dataset_type self.encoder = encoder self.max_instructions = max_instructions self.max_num_vertices = max_num_vertices self.batch_dim = 0 self.num_pairs = 0 self.num_batches = 0 self.flags = flags self.converter = InstructionsConverter(json_asm2id) self.normalizer = FunctionNormalizer(self.max_instructions) conn = sqlite3.connect(self.db_name) cur = conn.cursor() q = cur.execute("SELECT count(*) from " + self.dataset_type) count = int(q.fetchone()[0]) n_chunk = int(count / batch_size) - 1 self.num_batches = n_chunk conn.close()
def __init__(self, db_name, feature_type, dataset_type, json_asm2id, max_instructions, max_num_vertices): self.db_name = db_name self.feature_type = feature_type self.dataset_type = dataset_type self.max_instructions = max_instructions self.max_num_vertices = max_num_vertices self.batch_dim = 0 self.num_pairs = 0 self.num_batches = 0 self.converter = InstructionsConverter(json_asm2id) self.normalizer = FunctionNormalizer(self.max_instructions)
class SAFE: def __init__(self, model): self.converter = InstructionsConverter("data/i2v/word2id.json") self.normalizer = FunctionNormalizer(max_instruction=150) self.embedder = SAFEEmbedder(model) self.embedder.loadmodel() self.embedder.get_tensor() def embedd_function(self, filename, address): analyzer = RadareFunctionAnalyzer(filename, use_symbol=False, depth=0) functions = analyzer.analyze() instructions_list = None for function in functions: if functions[function]['address'] == address: instructions_list = functions[function][ 'filtered_instructions'] break if instructions_list is None: print("Function not found") return None converted_instructions = self.converter.convert_to_ids( instructions_list) instructions, length = self.normalizer.normalize_functions( [converted_instructions]) embedding = self.embedder.embedd(instructions, length) return embedding
class FunctionsEmbedder: def __init__(self, model, batch_size, max_instruction): self.batch_size = batch_size self.normalizer = FunctionNormalizer(max_instruction) self.safe = SAFEEmbedder(model) self.safe.loadmodel() self.safe.get_tensor() def compute_embeddings(self, functions): functions, lenghts = self.normalizer.normalize_functions(functions) embeddings = self.safe.embedd(functions, lenghts) return embeddings @staticmethod def create_table(db_name, table_name): conn = sqlite3.connect(db_name) c = conn.cursor() c.execute( "CREATE TABLE IF NOT EXISTS {} (id INTEGER PRIMARY KEY, {} TEXT)". format(table_name, table_name)) conn.commit() conn.close() def compute_and_save_embeddings_from_db(self, db_name, table_name): FunctionsEmbedder.create_table(db_name, table_name) conn = sqlite3.connect(db_name) cur = conn.cursor() q = cur.execute( "SELECT id FROM functions WHERE id not in (SELECT id from {})". format(table_name)) ids = q.fetchall() for i in tqdm(range(0, len(ids), self.batch_size)): functions = [] batch_ids = ids[i:i + self.batch_size] for my_id in batch_ids: q = cur.execute( "SELECT instructions_list FROM filtered_functions where id=?", my_id) functions.append(json.loads(q.fetchone()[0])) embeddings = self.compute_embeddings(functions) for l, id in enumerate(batch_ids): cur.execute("INSERT INTO {} VALUES (?,?)".format(table_name), (id[0], np.array2string(embeddings[l]))) conn.commit()
class PairFactory(DatasetGenerator): def __init__(self, db_name, feature_type, dataset_type, json_asm2id, max_instructions, max_num_vertices, encoder, batch_size, flags=None): self.db_name = db_name self.feature_type = feature_type self.dataset_type = dataset_type self.encoder = encoder self.max_instructions = max_instructions self.max_num_vertices = max_num_vertices self.batch_dim = 0 self.num_pairs = 0 self.num_batches = 0 self.flags = flags self.converter = InstructionsConverter(json_asm2id) self.normalizer = FunctionNormalizer(self.max_instructions) conn = sqlite3.connect(self.db_name) cur = conn.cursor() q = cur.execute("SELECT count(*) from " + self.dataset_type) count = int(q.fetchone()[0]) n_chunk = int(count / batch_size) - 1 self.num_batches = n_chunk conn.close() def remove_bad_acfg_node(self, g): nodeToRemove = [] for n in g.nodes(data=True): f = n[1]['features'] if len(f.keys()) == 0: nodeToRemove.append(n[0]) for n in nodeToRemove: g.remove_node(n) return g def split(self, a, n): return [a[i::n] for i in range(n)] def get_node_matrix(self, nodes): if isinstance(nodes, int): print(nodes) num_node = len(nodes) node_matrix = np.zeros([num_node, 8]) for i, n in enumerate(nodes): f = n[1]['features'] if isinstance(f['constant'], int): node_matrix[i, 0] = f['constant'] else: node_matrix[i, 0] = len(f['constant']) if isinstance(f['string'], int): node_matrix[i, 1] = f['string'] else: node_matrix[i, 1] = len(f['string']) node_matrix[i, 2] = f['transfer'] node_matrix[i, 3] = f['call'] node_matrix[i, 4] = f['instruction'] node_matrix[i, 5] = f['arith'] node_matrix[i, 6] = f['offspring'] node_matrix[i, 7] = f['betweenness'] return node_matrix def get_data_from_acfg(self, g): g = self.remove_bad_acfg_node(g) if len(g.nodes) > 0: adj = nx.adjacency_matrix(g) node_matrix = self.get_node_matrix(g.nodes(data=True)) else: adj = sparse.bsr_matrix(np.zeros([1, 1])) node_matrix = np.zeros([1, 8]) lenghts = [8] * len(node_matrix) return adj, node_matrix, lenghts def get_data_from_cfg(self, cfg): adj = sparse.csr_matrix([1, 1]) lenghts = [] node_matrix = [] try: adj = nx.adjacency_matrix(cfg) nodes = cfg.nodes(data=True) for i, n in enumerate(nodes): filtered = self.converter.convert_to_ids(n[1]['features']) lenghts.append(len(filtered)) node_matrix.append(self.normalizer.normalize(filtered)[0]) except: pass return adj, node_matrix, lenghts def async_chunker(self, epoch, batch_size, shuffle=True): self.num_pairs = 0 conn = sqlite3.connect(self.db_name) cur = conn.cursor() q = cur.execute("SELECT id from " + self.dataset_type) ids = q.fetchall() ids = [ii[0] for ii in ids] data_len = len(ids) n_chunk = int(data_len / batch_size) - 1 random.seed(17) self.num_batches = n_chunk lista_chunk = range(0, n_chunk) coda = Queue(maxsize=50) n_proc = 10 listone = self.split(lista_chunk, n_proc) for i in range(0, n_proc): l = list(listone[i]) p = Process(target=self.async_create_pair, args=((epoch, l, batch_size, coda, shuffle, self.encoder))) p.start() while coda.empty(): pass for i in range(0, n_chunk): yield self.async_get_dataset(i, n_chunk, batch_size, coda, shuffle) def get_pair_from_db(self, epoch_number, chunk, number_of_functions, label_encoder): conn = sqlite3.connect(self.db_name) cur = conn.cursor() functions = [] labels = [] lenghts = [] q = cur.execute("SELECT id FROM " + self.dataset_type) ids = q.fetchall() rng = random.Random(epoch_number) rng.shuffle(ids) data_len = len(ids) i = 0 while i < number_of_functions: if chunk * int(number_of_functions) + i > data_len: break ii = ids[chunk * int(number_of_functions) + i] q = cur.execute( "SELECT " + self.feature_type + " FROM " + self.feature_type + " WHERE id=?", ii) if self.feature_type == 'acfg': adj, node, lenghts0 = self.get_data_from_acfg( json_graph.adjacency_graph(json.loads(q.fetchone()[0]))) elif self.feature_type == 'lstm_cfg': adj, node, lenghts0 = self.get_data_from_cfg( json_graph.adjacency_graph(json.loads(q.fetchone()[0]))) functions.append([(adj, node)]) lenghts.append(lenghts0) if self.flags is None or self.flags.class_kind == "CMP" or self.flags.class_kind == "FML": query_str = "SELECT compiler FROM functions WHERE id=?" elif self.flags.class_kind == "CMPOPT": query_str = "SELECT compiler,optimization FROM functions WHERE id=?" elif self.flags.class_kind == "OPT": query_str = "SELECT optimization FROM functions WHERE id=?" q = cur.execute(query_str, ii) q_compiler = q.fetchone() if self.flags.class_kind == "CMPOPT": compiler = q_compiler[0] + '-' + q_compiler[1] elif self.flags.class_kind == "FML": compiler = str(q_compiler[0]).split('-')[0] else: compiler = q_compiler[0] encoded = label_encoder.transform([compiler]) labels.append(encoded) i += 1 if self.feature_type == 'acfg': pairs, labels, output_len = padAndFilter(functions, labels, [[[1]]] * len(functions), self.max_num_vertices) output_len = [[1]] elif self.feature_type == 'lstm_cfg': pairs, labels, output_len = padAndFilter(functions, labels, lenghts, self.max_num_vertices) return pairs, labels, output_len def async_create_pair(self, epoch, n_chunk, number_of_functions, q, shuffle, encoder): for i in n_chunk: pairs, y, lenghts = self.get_pair_from_db(epoch, i, number_of_functions, encoder) assert (len(pairs) == len(y)) n_samples = len(pairs) len1 = [] for l in lenghts: len1.append(l[0]) adj1 = [] nodes1 = [] for p in pairs: adj1.append(p[0][0]) nodes1.append(p[0][1]) y_ = [] for yy in y: y_.append(yy[0]) for i in range(0, n_samples, number_of_functions): upper_bound = min(i + number_of_functions, n_samples) ret_adj = adj1[i:upper_bound] ret_nodes = nodes1[i:upper_bound] ret_len = len1[i:upper_bound] ret_y = y_[i:upper_bound] q.put((ret_adj, ret_nodes, ret_y, ret_len), block=True) def async_get_dataset(self, chunk, n_chunk, number_of_pairs, q, shuffle): item = q.get() n_samples = len(item[0]) self.batch_dim = n_samples self.num_pairs += n_samples return item[0], item[1], item[2], item[3]
def get_couple_from_db(self, epoch_number, chunk): conn = sqlite3.connect(self.db_name) cur = conn.cursor() pairs = [] labels = [] q = cur.execute( "SELECT true_pair, false_pair from " + self.dataset_type + " WHERE id=?", (int(epoch_number), )) true_pairs_id, false_pairs_id = q.fetchone() true_pairs_id = json.loads(true_pairs_id) false_pairs_id = json.loads(false_pairs_id) conn.close() data_len = len(true_pairs_id) i = 0 normalizer = FunctionNormalizer(self.max_instructions) while i < self.batch_size: if chunk * int(self.batch_size / 2) + i > data_len: break p = true_pairs_id[chunk * int(self.batch_size / 2) + i] f0, f1 = self.get_pair_fromdb(p[0], p[1]) pairs.append((f0, f1)) labels.append(+1) p = false_pairs_id[chunk * int(self.batch_size / 2) + i] f0, f1 = self.get_pair_fromdb(p[0], p[1]) pairs.append((f0, f1)) labels.append(-1) i += 2 pairs, lengths = normalizer.normalize_function_pairs(pairs) function1, function2 = zip(*pairs) len1, len2 = zip(*lengths) n_samples = len(pairs) if self.shuffle: shuffle_indices = np.random.permutation(np.arange(n_samples)) function1 = np.array(function1)[shuffle_indices] function2 = np.array(function2)[shuffle_indices] len1 = np.array(len1)[shuffle_indices] len2 = np.array(len2)[shuffle_indices] labels = np.array(labels)[shuffle_indices] else: function1 = np.array(function1) function2 = np.array(function2) len1 = np.array(len1) len2 = np.array(len2) labels = np.array(labels) upper_bound = min(self.batch_size, n_samples) len1 = len1[0:upper_bound] len2 = len2[0:upper_bound] function1 = function1[0:upper_bound] function2 = function2[0:upper_bound] y_ = labels[0:upper_bound] return function1, function2, len1, len2, y_
def __init__(self, model): self.converter = InstructionsConverter("data/i2v/word2id.json") self.normalizer = FunctionNormalizer(max_instruction=150) self.embedder = SAFEEmbedder(model) self.embedder.loadmodel() self.embedder.get_tensor()
def __init__(self, model, batch_size, max_instruction): self.batch_size = batch_size self.normalizer = FunctionNormalizer(max_instruction) self.safe = SAFEEmbedder(model) self.safe.loadmodel() self.safe.get_tensor()
class PairFactory(DatasetGenerator): def __init__(self, db_name, feature_type, dataset_type, json_asm2id, max_instructions, max_num_vertices): self.db_name = db_name self.feature_type = feature_type self.dataset_type = dataset_type self.max_instructions = max_instructions self.max_num_vertices = max_num_vertices self.batch_dim = 0 self.num_pairs = 0 self.num_batches = 0 self.converter = InstructionsConverter(json_asm2id) self.normalizer = FunctionNormalizer(self.max_instructions) def get_data_from_cfg(self, cfg): adj = sparse.csr_matrix([1, 1]) lenghts = [] node_matrix = [] try: adj = nx.adjacency_matrix(cfg) nodes = cfg.nodes(data=True) for i, n in enumerate(nodes): filtered = self.converter.convert_to_ids(n[1]['features']) lenghts.append(len(filtered)) node_matrix.append(self.normalizer.normalize(filtered)[0]) except: pass return adj, node_matrix, lenghts def remove_bad_acfg_node(self, g): nodeToRemove = [] for n in g.nodes(data=True): f = n[1]['features'] if len(f.keys()) == 0: nodeToRemove.append(n[0]) for n in nodeToRemove: g.remove_node(n) return g def get_node_matrix(self, nodes): num_node = len(nodes) node_matrix = np.zeros([num_node, 8]) for i, n in enumerate(nodes): f = n[1]['features'] if isinstance(f['constant'], list): node_matrix[i, 0] = len(f['constant']) else: node_matrix[i, 0] = f['constant'] if isinstance(f['string'], list): node_matrix[i, 1] = len(f['string']) else: node_matrix[i, 1] = f['string'] node_matrix[i, 2] = f['transfer'] node_matrix[i, 3] = f['call'] node_matrix[i, 4] = f['instruction'] node_matrix[i, 5] = f['arith'] node_matrix[i, 6] = f['offspring'] node_matrix[i, 7] = f['betweenness'] return node_matrix def get_data_from_acfg(self, g): g = self.remove_bad_acfg_node(g) if len(g.nodes) > 0: adj = nx.adjacency_matrix(g) node_matrix = self.get_node_matrix(g.nodes(data=True)) else: adj = sparse.bsr_matrix(np.zeros([1, 1])) node_matrix = np.zeros([1, 8]) lenght = 8 return adj, node_matrix, lenght def async_chunker(self, epoch, number_of_pairs, shuffle=True): self.num_pairs = 0 conn = sqlite3.connect(self.db_name) cur = conn.cursor() q = cur.execute( "SELECT true_pair, false_pair from " + self.dataset_type + " WHERE id=?", (int(epoch), )) true_pairs_id, false_pairs_id = q.fetchone() true_pairs_id = json.loads(true_pairs_id) false_pairs_id = json.loads(false_pairs_id) assert len(true_pairs_id) == len(false_pairs_id) data_len = len(true_pairs_id) print("Data Len: " + str(data_len)) conn.close() n_chunk = int(data_len / (number_of_pairs / 2)) - 1 self.num_batches = n_chunk q = Queue(maxsize=50) t = Thread(target=self.async_create_pairs, args=(epoch, n_chunk, number_of_pairs, q)) t.start() for i in range(0, n_chunk): yield self.async_get_dataset(i, n_chunk, number_of_pairs, q, shuffle) def get_pair_from_db(self, epoch_number, chunk, number_of_pairs): conn = sqlite3.connect(self.db_name) cur = conn.cursor() pairs = [] labels = [] lenghts = [] q = cur.execute( "SELECT true_pair, false_pair from " + self.dataset_type + " WHERE id=?", (int(epoch_number), )) true_pairs_id, false_pairs_id = q.fetchone() true_pairs_id = json.loads(true_pairs_id) false_pairs_id = json.loads(false_pairs_id) data_len = len(true_pairs_id) i = 0 while i < number_of_pairs: if chunk * int(number_of_pairs / 2) + i > data_len: break p = true_pairs_id[chunk * int(number_of_pairs / 2) + i] q0 = cur.execute( "SELECT " + self.feature_type + " FROM " + self.feature_type + " WHERE id=?", (p[0], )) if self.feature_type == 'acfg': adj0, node0, lenghts0 = self.get_data_from_acfg( json_graph.adjacency_graph(json.loads(q0.fetchone()[0]))) elif self.feature_type == 'lstm_cfg': adj0, node0, lenghts0 = self.get_data_from_cfg( json_graph.adjacency_graph(json.loads(q0.fetchone()[0]))) q1 = cur.execute( "SELECT " + self.feature_type + " FROM " + self.feature_type + " WHERE id=?", (p[1], )) if self.feature_type == 'acfg': adj1, node1, lenghts1 = self.get_data_from_acfg( json_graph.adjacency_graph(json.loads(q0.fetchone()[0]))) elif self.feature_type == 'lstm_cfg': adj1, node1, lenghts1 = self.get_data_from_cfg( json_graph.adjacency_graph(json.loads(q1.fetchone()[0]))) pairs.append(((adj0, node0), (adj1, node1))) lenghts.append([lenghts0, lenghts1]) labels.append(+1) p = false_pairs_id[chunk * int(number_of_pairs / 2) + i] q0 = cur.execute( "SELECT " + self.feature_type + " FROM " + self.feature_type + " WHERE id=?", (p[0], )) if self.feature_type == 'acfg': adj0, node0, lenghts0 = self.get_data_from_acfg( json_graph.adjacency_graph(json.loads(q0.fetchone()[0]))) elif self.feature_type == 'lstm_cfg': adj0, node0, lenghts0 = self.get_data_from_cfg( json_graph.adjacency_graph(json.loads(q0.fetchone()[0]))) q1 = cur.execute( "SELECT " + self.feature_type + " FROM " + self.feature_type + " WHERE id=?", (p[1], )) if self.feature_type == 'acfg': adj1, node1, lenghts1 = self.get_data_from_acfg( json_graph.adjacency_graph(json.loads(q0.fetchone()[0]))) elif self.feature_type == 'lstm_cfg': adj1, node1, lenghts1 = self.get_data_from_cfg( json_graph.adjacency_graph(json.loads(q1.fetchone()[0]))) pairs.append(((adj0, node0), (adj1, node1))) lenghts.append([lenghts0, lenghts1]) labels.append(-1) i += 2 if self.feature_type == 'acfg': pairs, labels, output_len = padAndFilter(pairs, labels, self.max_num_vertices) elif self.feature_type == 'lstm_cfg': pairs, labels, output_len = padAndFilterLSTM( pairs, labels, lenghts, self.max_num_vertices) return pairs, labels, output_len def async_create_pairs(self, epoch, n_chunk, number_of_pairs, q): for i in range(0, n_chunk): pairs, y_, lenghts = self.get_pair_from_db(epoch, i, number_of_pairs) q.put((pairs, y_, lenghts), block=True) def async_get_dataset(self, chunk, n_chunk, number_of_pairs, q, shuffle): item = q.get() pairs = item[0] y_ = item[1] lenghts = item[2] assert (len(pairs) == len(y_)) n_samples = len(pairs) self.batch_dim = n_samples self.num_pairs += n_samples # Unpack the list graph1, graph2 = zip(*pairs) len1, len2 = zip(*lenghts) adj1, nodes1 = zip(*graph1) adj2, nodes2 = zip(*graph2) if shuffle: shuffle_indices = np.random.permutation(np.arange(n_samples)) adj1 = np.array(adj1)[shuffle_indices] nodes1 = np.array(nodes1)[shuffle_indices] adj2 = np.array(adj2)[shuffle_indices] nodes2 = np.array(nodes2)[shuffle_indices] y_ = np.array(y_)[shuffle_indices] for i in range(0, n_samples, number_of_pairs): upper_bound = min(i + number_of_pairs, n_samples) ret_adj1 = adj1[i:upper_bound] ret_nodes1 = nodes1[i:upper_bound] ret_len1 = len1[i:upper_bound] ret_adj2 = adj2[i:upper_bound] ret_nodes2 = nodes2[i:upper_bound] ret_len2 = len2[i:upper_bound] ret_y = y_[i:upper_bound] return ret_adj1, ret_nodes1, ret_adj2, ret_nodes2, ret_y, ret_len1, ret_len2