예제 #1
0
    def eigs(self):
        """
        Eigendecomposition of volume covariance matrix of simulation
        :return: A 2-tuple:
            eigs_true: The eigenvectors of the volume covariance matrix in the form of an L-by-L-by-L-by-(C-1) array,
            where C is the number of distinct states in the simulation
            lambdas_true: The eigenvalues of the covariance matrix in the form of a (C-1)-by-(C-1) diagonal matrix.
        """
        C = self.C
        vols_c = self.vols - np.expand_dims(self.mean_true(), 3)
        p = np.ones(C) / C
        vols_c = vol_to_vec(vols_c)
        Q, R = qr(vols_c, mode='economic')

        # Rank is at most C-1, so remove last vector
        Q = Q[:, :-1]
        R = R[:-1, :]

        w, v = eigh(make_symmat(R @ np.diag(p) @ R.T))
        eigs_true = vec_to_vol(Q @ v)

        # Arrange in descending order (flip column order in eigenvector matrix)
        w = w[::-1]
        eigs_true = np.flip(eigs_true, axis=-1)

        return eigs_true, np.diag(w)
예제 #2
0
    def src_backward(self, mean_vol, noise_variance, shrink_method=None):
        """
        Apply adjoint mapping to source

        :return: The sum of the outer products of the mean-subtracted images in `src`, corrected by the expected noise
        contribution and expressed as coefficients of `basis`.
        """
        covar_b = np.zeros((self.L, self.L, self.L, self.L, self.L, self.L),
                           dtype=self.as_type)

        for i in range(0, self.n, self.batch_size):
            im = self.src.images(i, self.batch_size)
            batch_n = im.shape[-1]
            im_centered = im - self.src.vol_forward(mean_vol, i,
                                                    self.batch_size)

            im_centered_b = np.zeros((self.L, self.L, self.L, batch_n),
                                     dtype=self.as_type)
            for j in range(batch_n):
                im_centered_b[:, :, :, j] = self.src.im_backward(
                    im_centered[:, :, j], i + j)
            im_centered_b = vol_to_vec(im_centered_b)

            covar_b += vecmat_to_volmat(
                im_centered_b @ im_centered_b.T) / self.n

        covar_b_coeff = self.basis.mat_evaluate_t(covar_b)
        return self._shrink(covar_b_coeff, noise_variance, shrink_method)
예제 #3
0
    def covar_true(self):
        eigs_true, lamdbas_true = self.eigs()
        eigs_true = vol_to_vec(eigs_true)
        covar_true = eigs_true @ lamdbas_true @ eigs_true.T
        covar_true = vecmat_to_volmat(covar_true)

        return covar_true
예제 #4
0
    def vol_coords(self, mean_vol=None, eig_vols=None):
        """
        Coordinates of simulation volumes in a given basis
        :param mean_vol: A mean volume in the form of an L-by-L-by-L array (default `mean_true`).
        :param eig_vols: A set of eigenvolumes in an L-by-L-by-L-by-K array (default `eigs`).
        :return:
        """
        if mean_vol is None:
            mean_vol = self.mean_true()
        if eig_vols is None:
            eig_vols = self.eigs()[0]

        vols = self.vols - np.expand_dims(mean_vol, 3)
        coords = vol_to_vec(eig_vols).T @ vol_to_vec(vols)
        res = vols - vec_to_vol(vol_to_vec(eig_vols) @ coords)
        res_norms = np.diag(anorm(res, (0, 1, 2)))
        res_inners = vol_to_vec(mean_vol).T @ vol_to_vec(res)

        return coords.squeeze(), res_norms, res_inners
예제 #5
0
    def compute_kernel(self):
        # TODO: Most of this stuff is duplicated in MeanEstimator - move up the hierarchy?
        n = self.n
        L = self.L
        _2L = 2 * self.L

        kernel = np.zeros((_2L, _2L, _2L, _2L, _2L, _2L), dtype=self.as_type)
        filters_f = self.src.filters.evaluate_grid(L)
        sq_filters_f = np.array(filters_f**2, dtype=self.as_type)

        for i in tqdm(range(0, n, self.batch_size)):
            pts_rot = rotated_grids(L, self.src.rots[:, :,
                                                     i:i + self.batch_size])
            weights = sq_filters_f[:, :,
                                   self.src.filters.indices[i:i +
                                                            self.batch_size]]
            weights *= self.src.amplitudes[i:i + self.batch_size]**2

            if L % 2 == 0:
                weights[0, :, :] = 0
                weights[:, 0, :] = 0

            # TODO: This is where this differs from MeanEstimator
            pts_rot = m_reshape(pts_rot, (3, L**2, -1))
            weights = m_reshape(weights, (L**2, -1))

            batch_n = weights.shape[-1]
            factors = np.zeros((_2L, _2L, _2L, batch_n), dtype=self.as_type)

            # TODO: Numpy has got to have a functional shortcut to avoid looping like this!
            for j in range(batch_n):
                factors[:, :, :, j] = anufft3(weights[:, j],
                                              pts_rot[:, :, j],
                                              (_2L, _2L, _2L),
                                              real=True)

            factors = vol_to_vec(factors)
            kernel += vecmat_to_volmat(factors @ factors.T) / (n * L**8)

        # Ensure symmetric kernel
        kernel[0, :, :, :, :, :] = 0
        kernel[:, 0, :, :, :, :] = 0
        kernel[:, :, 0, :, :, :] = 0
        kernel[:, :, :, 0, :, :] = 0
        kernel[:, :, :, :, 0, :] = 0
        kernel[:, :, :, :, :, 0] = 0

        logger.info('Computing non-centered Fourier Transform')
        kernel = mdim_ifftshift(kernel, range(0, 6))
        kernel_f = fftn(kernel)
        # Kernel is always symmetric in spatial domain and therefore real in Fourier
        kernel_f = np.real(kernel_f)

        return FourierKernel(kernel_f, centered=False)
예제 #6
0
    def eval_eigs(self, eigs_est, lambdas_est):
        """
        Evaluate covariance eigendecomposition accuracy
        :param eigs_est: The estimated volume eigenvectors in an L-by-L-by-L-by-K array.
        :param lambdas_est: The estimated eigenvalues in a K-by-K diagonal matrix (default `diag(ones(K, 1))`).
        :return:
        """
        eigs_true, lambdas_true = self.eigs()

        B = vol_to_vec(eigs_est).T @ vol_to_vec(eigs_true)
        norm_true = anorm(lambdas_true)
        norm_est = anorm(lambdas_est)

        inner = ainner(B @ lambdas_true, lambdas_est @ B)
        err = np.sqrt(norm_true**2 + norm_est**2 - 2 * inner)
        rel_err = err / norm_true
        corr = inner / (norm_true * norm_est)

        # TODO: Determine Principal Angles and return as a dict value

        return {'err': err, 'rel_err': rel_err, 'corr': corr}
예제 #7
0
    def eval_coords(self, mean_vol, eig_vols, coords_est):
        """
        Evaluate coordinate estimation
        :param mean_vol: A mean volume in the form of an L-by-L-by-L array.
        :param eig_vols: A set of eigenvolumes in an L-by-L-by-L-by-K array.
        :param coords_est: The estimated coordinates in the affine space defined centered at `mean_vol` and spanned
            by `eig_vols`.
        :return:
        """
        coords_true, res_norms, res_inners = self.vol_coords(
            mean_vol, eig_vols)

        # 0-indexed states vector
        states = self.states - 1

        coords_true = coords_true[states]
        res_norms = res_norms[states]
        res_inners = res_inners[states]

        mean_eigs_inners = np.asscalar(
            vol_to_vec(mean_vol).T @ vol_to_vec(eig_vols))
        coords_err = coords_true - coords_est

        err = np.hypot(res_norms, coords_err)
        mean_vol_norm2 = anorm(mean_vol)**2
        norm_true = np.sqrt(coords_true**2 + mean_vol_norm2 + 2 * res_inners +
                            2 * mean_eigs_inners * coords_true)
        norm_true = np.hypot(res_norms, norm_true)

        rel_err = err / norm_true
        inner = mean_vol_norm2 + mean_eigs_inners * (
            coords_true + coords_est) + coords_true * coords_est + res_inners
        norm_est = np.sqrt(coords_est**2 + mean_vol_norm2 +
                           2 * mean_eigs_inners * coords_est)

        corr = inner / (norm_true * norm_est)

        return {'err': err, 'rel_err': rel_err, 'corr': corr}
예제 #8
0
    def expand_t(self, v):
        ensure(v.shape[0] == self.basis_count,
               f'First dimension of v must be {self.basis_count}')

        v, sz_roll = unroll_dim(v, 2)
        b = vol_to_vec(self.evaluate(v))

        operator = LinearOperator(
            shape=(self.N**3, self.N**3),
            matvec=lambda x: vol_to_vec(
                self.evaluate(self.evaluate_t(vec_to_vol(x)))))

        # TODO: (from MATLAB implementation) - Check that this tolerance make sense for multiple columns in v
        tol = 10 * np.finfo(v.dtype).eps
        logger.info('Expanding array in dual basis')
        v, info = cg(operator, b, tol=tol)

        if info != 0:
            raise RuntimeError('Unable to converge!')

        v = roll_dim(v, sz_roll)
        x = vec_to_vol(v)

        return x
예제 #9
0
    def toeplitz(self, L=None):
        """
        Compute the 3D Toeplitz matrix corresponding to this Fourier Kernel
        :param L: The size of the volumes to be convolved (default M/2, where the dimensions of this Fourier Kernel
            are MxMxM
        :return: An six-dimensional Toeplitz matrix of size L describing the convolution of a volume with this kernel
        """
        if L is None:
            L = int(self.M / 2)

        A = np.eye(L**3, dtype=self.as_type)
        for i in range(L**3):
            A[:, i] = vol_to_vec(self.convolve_volume(vec_to_vol(A[:, i])))

        A = vecmat_to_volmat(A)
        return A
예제 #10
0
    def testVolToVec2(self):
        m = np.empty((3, 3, 3))
        m2 = vol_to_vec(m)

        self.assertEqual(m2.shape, (27, ))