예제 #1
0
def export_to_string(project_id, export_type="csv"):
    fp_lock = get_lock_path(project_id)
    as_data = read_data(project_id)
    with SQLiteLock(fp_lock, blocking=True, lock_name="active"):
        proba = read_proba(project_id)
        if proba is None:
            proba = np.flip(np.arange(len(as_data)))
        else:
            proba = np.array(proba)
        labels = read_current_labels(project_id, as_data=as_data)

    pool_idx = np.where(labels == LABEL_NA)[0]
    one_idx = np.where(labels == 1)[0]
    zero_idx = np.where(labels == 0)[0]

    proba_order = np.argsort(-proba[pool_idx])
    ranking = np.concatenate((one_idx, pool_idx[proba_order], zero_idx),
                             axis=None)

    if export_type == "csv":
        return as_data.to_csv(fp=None, labels=labels, ranking=ranking)
    if export_type == "excel":
        get_tmp_path(project_id).mkdir(exist_ok=True)
        fp_tmp_export = Path(get_tmp_path(project_id), "export_result.xlsx")
        return as_data.to_excel(fp=fp_tmp_export,
                                labels=labels,
                                ranking=ranking)
    else:
        raise ValueError("This export type isn't implemented.")
예제 #2
0
def export_to_string(project_id, export_type="csv"):

    # read the dataset into a ASReview data object
    as_data = read_data(project_id)

    # set the lock to safely read labeled, pool, and proba
    fp_lock = get_lock_path(project_id)
    with SQLiteLock(
            fp_lock,
            blocking=True,
            lock_name="active",
            project_id=project_id
    ):
        proba = read_proba(project_id)
        pool = read_pool(project_id)
        labeled = read_label_history(project_id)

    # get the record_id of the inclusions and exclusions
    inclusion_record_id = [int(x[0]) for x in labeled if x[1] == 1]
    exclusion_record_id = [int(x[0]) for x in labeled if x[1] == 0]

    # order the pool from high to low proba
    if proba is not None:
        pool_ordered = proba.loc[pool, :] \
            .sort_values("proba", ascending=False).index.values
    else:
        pool_ordered = pool_ordered

    # get the ranking of the 3 subcategories
    ranking = np.concatenate(
        (
            # add the inclusions first
            inclusion_record_id,
            # add the ordered pool second
            pool_ordered,
            # add the exclusions last
            exclusion_record_id
        ),
        axis=None
    )

    # export the data to file
    if export_type == "csv":
        return as_data.to_csv(fp=None, labels=labeled, ranking=ranking)

    if export_type == "tsv":
        return as_data.to_csv(
            fp=None, sep="\t", labels=labeled, ranking=ranking)

    if export_type == "excel":
        get_tmp_path(project_id).mkdir(exist_ok=True)
        fp_tmp_export = Path(get_tmp_path(project_id), "export_result.xlsx")
        return as_data.to_excel(
            fp=fp_tmp_export, labels=labeled, ranking=ranking)
    else:
        raise ValueError("This export type isn't implemented.")
예제 #3
0
def export_to_string(project_id):
    fp_lock = get_lock_path(project_id)
    as_data = read_data(project_id)
    with SQLiteLock(fp_lock, blocking=True, lock_name="active"):
        proba = read_proba(project_id)
        if proba is None:
            proba = np.flip(np.arange(len(as_data)))
        else:
            proba = np.array(proba)
        labels = read_current_labels(project_id, as_data=as_data)

    pool_idx = np.where(labels == LABEL_NA)[0]
    one_idx = np.where(labels == 1)[0]
    zero_idx = np.where(labels == 0)[0]

    proba_order = np.argsort(-proba[pool_idx])
    ranking = np.concatenate((one_idx, pool_idx[proba_order], zero_idx),
                             axis=None)
    return as_data.to_csv(fp=None, labels=labels, ranking=ranking)