예제 #1
0
파일: section.py 프로젝트: hexcap/hexcap
  def __init__(self, sectId, pos):
    self.ID = sectId # Our layer ID
    self.position = pos # Our relative position in the ordering of columns

    self.c = Assoc() # Assoc of columns
    self._width = 0 # Width of complete section
    self.visible = True # Is this section currently visible?
예제 #2
0
 def buildOBT(data, start, end):
     if start > end:
         return None
     mid = (end + start) // 2
     left = DictOptBinTree.buildOBT(data, start, mid - 1)
     right = DictOptBinTree.buildOBT(data, mid + 1, end)
     return BinTNode(Assoc(*data[mid]), left, right)
예제 #3
0
파일: section.py 프로젝트: hexcap/hexcap
class Section:
  def __init__(self, sectId, pos):
    self.ID = sectId # Our layer ID
    self.position = pos # Our relative position in the ordering of columns

    self.c = Assoc() # Assoc of columns
    self._width = 0 # Width of complete section
    self.visible = True # Is this section currently visible?

  def _get_width(self):
    if(self.exposed):
      return self._width
    else:
      return len(self.ID) + 3
  width = property(_get_width)

  def append(self, name, w):
    self.c[name] = w
    self._width += w + 1

  def __repr__(self):
    rv = "\nID:" + self.ID
    rv += " exposed:" + str(self.exposed)
    rv += " width:" + str(self.width)
    rv += " visible:" + str(self.visible)
    rv += " RO:" + str(self.RO) + "\n"
    for k,v in self.c.iteritems():
      rv += "  col:" + k + " w:" + str(v) + " "
    return rv

  def dump(self):
    return self.__repr__()
예제 #4
0
 def insert(self, key, value):
     bt = self._root
     if bt is None:
         self._root = BinTNode(Assoc(key, value))
         return
     while True:
         entry = bt.data
         if key < entry.key:
             if bt.left is None:
                 bt.left = BinTNode(Assoc(key, value))
                 return
             bt = bt.left
         elif key > entry.key:
             if bt.right is None:
                 bt.right = BinTNode(Assoc(key, value))
                 return
             bt = bt.right
         else:
             bt.data.value = value
             return
예제 #5
0
파일: avltree.py 프로젝트: DaiZhenye/ds
    def insert(self, key, value):
        a = p = self._root
        if a is None:
            self._root = AVLNode(Assoc(key, value))
            return
        pa = q = None  # 维持 pa, q 为 a, p 的父结点
        while p:       # 确定插入位置及最小非平衡子树
            if key == p.data.key:  # key存在,修改关联值
                p.data.value = value
                return
            if p.bf != 0:
                pa, a = q, p  # 已知最小非平衡子树
            q = p
            if key < p.data.key:
                p = p.left
            else:
                p = p.right
        # q 是插入点的父结点,parent,a 记录最小非平衡子树
        node = AVLNode(Assoc(key, value))
        if key < q.data.key:
            q.left = node   # 作为左子结点
        else:
            q.right = node  # 或右子结点
        # 新结点已插入,a 是最小不平衡子树
        if key < a.data.key:  # 新结点在 a 的左子树
            p = b = a.left
            d = 1
        else:                # 新结点在 a 的右子树
            p = b = a.right
            d = -1   # d记录新结点在a哪棵子树
        # 修改 b 到新结点路上各结点的BF值,b 为 a 的子结点
        while p != node:     # node 一定存在,不用判断 p 空
            if key < p.data.key:   # p 的左子树增高
                p.bf = 1
                p = p.left
            else:                  # p的右子树增高
                p.bf = -1
                p = p.right
        if a.bf == 0:   # a原BF为0,不会失衡
            a.bf = d
            return
        if a.bf == -d:  # 新结点在较低子树里
            a.bf = 0
            return
        # 新结点在较高子树,失衡,必须调整
        if d == 1:       # 新结点在 a 的左子树
            if b.bf == 1:
                b = DictAVL.LL(a, b)  # LL 调整
            else:
                b = DictAVL.LR(a, b)  # LR 调整
        else:            # 新结点在 a 的右子树
            if b.bf == -1:
                b = DictAVL.RR(a, b)  # RR 调整
            else:
                b = DictAVL.RL(a, b)  # RL 调整

        if pa is None:
            self._root = b    # 原 a 为树根
        else:
            if pa.left == a:
                pa.left = b
            else:
                pa.right = b
            if x not in self._elems:
                self._elems.append(x)

    def includes(self, e):
        return e in self._elems


def str_hash(s):
    h1 = 0
    for c in s:
        h1 = h1 * 29 + ord(c)
    return h1


if __name__ == '__main__':

    lst1 = [Assoc(randint(1, 30), i) for i in range(16)]
    lst1.sort()
    print(list(map(str, lst1)))
    for i in range(1, 30, 3):
        ind = bisearch(lst1, i)
        print("Search", i, "in the list and get:", ind)

    print("12345:",str_hash("12345"))
    print("asdfg:",str_hash("asdfg"))

    pass
        
    

 def insert(self, key, value):
     self._elems.append(Assoc(key, value))
예제 #8
0
 def insert(self, key, value):
     a = p = self._root
     if a is None:
         self._root = AVLNode(Assoc(key, value))
         return
     pa = q = None  # 维持pa, q为a, p的父节点
     while p:  # 确定插入位置和最小非平衡子树
         if key == p.data.key:
             p.data.value = value
             return
         if p.bf != 0:
             pa, a = q, p
         q = p
         if key < p.data.key:
             p = p.left
         else:
             p = p.right
     node = AVLNode(Assoc(key, value))
     # q是插入点的父节点
     if key < q.data.key:
         q.left = node
     else:
         q.right = node
     # 新结点已插入
     if key < a.data.key:  # 新结点在a的左子树
         p = b = a.left
         d = 1  # d记录新结点在a的哪颗子树
     else:
         p = b = a.right  # 新结点在a的右子树
         d = 1
     # 修改b到新结点路径上各节点的BF值,b为a的子节点
     while p != node:
         if key < p.data.key:  # p的左子树增高
             p.bf = 1
             p = p.left
         else:  # p的右子树增高
             p.bf = -1
             p = p.right
     if a.bf == 0:
         a.bf = d
         return
     if a.bf == -d:  # 新结点在较低子树里
         a.bf = 0
         return
     # 新结点在较高子树,失衡
     if d == 1:  # 新结点在a的左子树
         if b.bf == 1:
             b = DictAVL.LL(a, b)  # LL调整
         else:
             b = DictAVL.LR(a, b)  # LR调整
     else:  # 新结点在a的右子树
         if b.bf == -1:
             b = DictAVL.RR(a, b)  # RR调整
         else:
             b = DictAVL.RL(a, b)  # RL调整
     if pa is None:  # 原a为树根,修改_root
         self._root = b
     else:  # a为非树根
         if pa.left == a:
             pa.left = b
         else:
             pa.right = b
예제 #9
0
    def insert(self, key, value):
        a = p = self._root
        if self._root is None:
            self._root = AVLNode(Assoc(key, value))
            return

        pa = q = None

        #q,p是用来搜索的 a是非平衡子树的树根 pa是非平衡子树树根的父结点
        while p is not None:
            if key == p.data.key:  #要插入的assoc对象的key已经存在 替换value
                p.data.value = value
                return

            if p.bf != 0:
                pa, a = q, p  #记录非平衡子树

            q = p  #递归 q是p的父结点
            if key < p.data.key:
                p = p.left
            else:
                p = p.right

        # 得到插入点的父结点q 最小非平衡子树a 最小非平衡子树的父结点pa
        node = AVLNode(Assoc(key, value))
        #将结点插入
        if key < q.data.key:
            q.left = node  #作为左子结点
        else:
            q.right = node  #作为右子结点

        if key < a.data.key:
            p = b = a.left  #新结点在a的左子树
            d = 1  #d是a左右子树的高度差
        else:
            p = b = a.right  #新结点在a的右子树
            d = -1
        #插入之后 要修改bf值
        while p != node:
            if key < p.data.key:  #新插入结点在a的左子树 左子树增高
                p.bf = 1
                p = p.left
            else:  #新插入的结点在a的右子树 右子树增高
                p.bf = -1
                p = p.right

        if a.bf == 0:  #a的原BF为0 不会失衡
            a.bf = d
            return
        if a.bf == -d:  #新结点插入在了a的较低的子树
            a.bf = 0
            return

        if d == 1:  #新结点在a的左子树
            if b.bf == 1:
                b = DictAVL.LL(a, b)  #新结点在a的左子树的左子树
            else:
                b = DictAVL.LR(a, b)  #新结点在a的左子树的右子树
        else:
            if b.bf == -1:
                b = DictAVL.RR(a, b)  #新结点在a的右子树的右子树
            else:
                b = DictAVL.RL(a, b)  #新结点在a的右子树的左子树
        #修改pa与其子树的联系
        if pa is None:  #a为树根
            self._root = b
        else:
            if pa.left == a:
                pa.left = b
            else:
                pa.right = b